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A new, fast, accurate, and roundoff-error robust numerical technique for inte-
grating unsteady incompressible Navier—Stokes equations in cylindrical coordinates
is presented. The algorithm is based on a special change of dependent variables
which avoids the singularity problem and provides high accuracy and computational
efficiency. Accuracy and stability of the method are thoroughly tested for the model
problem of transitional and turbulent flows in an infinite circular pipe. Verification
of the algorithm includes two issues. First, spectral characteristics of the Hagen—
Poiseuille flow stability problem are compared with those of the discrete linearized
Navier—Stokes operator. Secondly, the results of direct Navier—Stokes simulation of
all stages of laminar-turbulent transition in a circular pipe at Reynolds number of 4000
are presented. Time evolution of finite-amplitude disturbances of laminar flow was
calculated until the statistically stationary turbulent flow regime was established.
In addition to common statistical analysis, the possibility of turbulence descrip-
tion by means of velocity fields having certain symmetries is examined. Thus, the
algorithm presented seems to be a ready-to-use robust tool for accurate investigation
and further parametric studies of both transition mechanisms and fully developed
turbulent flow regimes. © 1998 Academic Press

I. INTRODUCTION

In this paper we concern ourselves with the classical problem of Poiseuille flow stab
in an infinite circular pipeg ={r =(r, ¢, X):0<r < R, 0< ¢ < 27, |X| < 0o}. More than
a century ago O. Reynolds [1] suggested that the instability of stationary pipe flows ma
the reason for transition to turbulence and since then numerous attempts were underta
verify this hypothesis. Continuing interest in the problem is based on the desire to gai
insight into laminar-turbulent transition phenomena and its control. The pipe Poiseulille f
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stability problem is of special interest here because it is one of the simplest matheme
idealizations of O. Reynolds experiments.

The main objective of our work is to develop a fast, accurate, and robust Navier—St
algorithm suitable forfurther parametric studie®f pipe Poiseuille flow stability and
related problems. The algorithm constructed covers: (a) direct numerical integratio
three-dimensional nonstationary incompressible Navier—Stokes equations in cylindrice
ometry with coordinate singularities at supercritical Reynolds numbers; (b) discretiza
and efficient solution of the eigenvalue problem for the linearized Navier—Stokes oper:
Both issues are based on a new change of dependent variables for Navier—Stokes eqt
in cylindrical coordinates.

The set of key formulas as well as the results of numerical verification at physic:
meaningful parameters of the problem is presented in the following sections. Algorit
testing includes the investigation of temporal stability of pipe Poiseuille flow both in line
(i.e., with respect to infinitesimal disturbances) and in general nonlinear cases. In partic
we present results of direct Navier—Stokes simulation of laminar-turbulent transition
circular pipe at a supercritical Reynolds number of 4000. Initial disturbances of lami
flow were specified using nonaxisymmetric eigenfunctions of the Navier—Stokes equal
linearized about the parabolic velocity profile. Time evolution of finite-amplitude distt
bances was calculated until the statistically stationary turbulent flow regime was establis
Thus, the algorithm presented seems to be a ready-to-use tool for accurate investigat
both transition mechanisms and fully developed turbulent flow regimes.

Another new result of this paper is that we have shown analytically and numerically 1
in contrast to the plane channel and flat plate boundary layer flows the pipe flow turbule
cannot be described by means of Navier—Stokes solutions having certain symmetries
incorporating thep-expansion restrictions).

As far as we know this is the first direct simulation of all stages of laminar-turbule
transition in a circular pipe. In some previous Navier—Stokes simulations of pipe turbule
(see, e.g., Priymak [2], Egget al. [3]) initial conditions were to some extent close tc
experimental data thus beiagpriori close to the desired result. In computations of Nikitir
[4] initial flow field was produced by a random number generator that essentially lirr
the possibility of physical interpretation and reproduction of the results. Initial stage:
laminar-turbulent transition in a pipe were thoroughly examined by O’Sullivan and Bre
[5, 6]. Difficulties associated with the simulation of the late stages are well known to
also. Our former numerical techniques [7, 8] are well suited for the computation of fi
developed (statistically steady) turbulent flows as well as of the initial stages of lamil
turbulent transition but demand the repeating filtering of high-frequency modes at the
stages. Notice in addition that Eggedsal. [3] and Nikitin [4] utilized finite difference
methods to discretize Navier—Stokes equations. The complexity of their finite differe
computations seems to be somewhat lower compared to that of our spectral metho
the other hand accuracy of the spectral approach is higher: the details of, e.g., the s
time structure of the turbulent boundary layer may not be accurately described by f
difference methods which suffer from noticeable dispersion and diffusion errors.

Direct Navier—Stokes simulation of all stages of laminar-turbulent transition carried oL
the present work seems to be interesting in several aspects. From the hydrodynamic pc
view this is one in a few direct theoretical indications of the instability of the fully develop
stationary pipe flow with respect to finite amplitude disturbances. In the computatic
aspect the possibility of calculating the total temporal evolution of initial disturbances
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means of a unique algorithm without its tuning at different stages of transition is extrern
attractive, above all, because such a strategy leaves fixed the conditions of the num
experiment similar to those that take place in the laboratory. The latter facilitates the m
toring of accuracy and reliability of the results obtained. Fixed conditions of simulation
important also for parameter studies of Poiseuille flow stability including investigation
the disturbance structure and amplitude influence on the transition scenario. In addi
the possibility of using a robust algorithm for the simulation of all stages of tempo
transition allows one to rely on suitability to use its modifications for more complicat
(and more realistic) spatial transition calculations with nonperiodic inflow-outflow bound:
conditions.

Until now, most of the analytic and numerical works dealt with the linear stability
pipe Poiseuille flow. Careful investigations demonstrate the stability of a parabolic velo
profile with respect to axisymmetric as well as nonaxisymmetric disturbances at all Reyn
numbers [9]. In the axisymmetric case there also exists the rigorous proof of linear stak
[10]. Mathematically, investigation of the stability in the linear approach reduces to
linearization of the Navier—Stokes operator about the parabolic velocity profile, conseq
diagonalization, and analysis of eigenvalues. In the present work we are not conce
with numerical methods based on the determination of a few leading eigenvalues defi
an asymptotic stability of the stationary solution. On the contrary, we are intereste
algorithms able to calculate the full set of eigenvalues of the Navier—Stokes operator fo
following reasons.

First, according to modern concepts the local growth of asymptotically stable disturbal
can play an important role in triggering transition. At least two mechanisms of suc
behaviour are proposed: an algebraic growth of eigenfunctions closely associated wit
near degeneracy of eigenvalues [11] and the so-called transient growth stipulated b
nonorthogonality of eigenfunctions of the linear stability operator [12]. In both cases i
suggested to compose an initial disturbance as a superposition of several specially se
eigenfunctions corresponding to eigenvalues from different parts of the spectrum. T
eigenfunctions and eigenvalues have to be computed with high accuracy. The questi
whether the mechanism indicated can really launch the nonlinear interactions and fir
result in the transition to turbulence remains undecided (see, e.g., [5, 6]) and needs fu
verification.

Second, the knowledge of the complete set of numerical eigenva?_lu}iél, rerg >
reXkH whereK depends on the resolution is necessary for the discretization quality cont
Among the leading valueg, k~ 1,2, ..., K /3 there must be no “spurious” (see also [13]
or other parasitic eigenvalues bearing any relation to the pipe flow spectrum. Eigenve
Ak, k > 2K /3 (the upper third of a numerical spectrum) always correspond to the numer
rubbish and strongly depend on the discretization technique. Nevertheless, the upper
of the spectrum essentially affects the stability of explicit as well as the convergence
accuracy of implicit time advancing schemes. Thus, the calculation and analysis of the
set of numerical eigenvalues serves as a convenient tool fampaiori monitoring of the
Navier—Stokes spatial and temporal discretizations.

Numerical solution of the linear stability problem implies the Navier—Stokes spatial
cretization followed by the reducing of discrete equations to a standard eigenvalue prol
AX = Ax. Eigenvalues. may then be calculated by means of the QR-algorithm. Certe
difficulties arise when accurately approximating Navier—Stokes equations near the co
nate singularityr( = 0). Poor discretization may easily lead to low accuracy and sensitiv
of the results to the roundoff errors. From cylindrical symmetry of the problem it follow
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that the sought for solution may be written as

o0
v(r,t) = Z vEa x, e, v =iz =

Nn=—00

with an integration domaig’ = {0 <r < R, |X|] < oo} for the Navier—Stokes equations
written in terms of Fourier coefficients, . Since there is no physical boundaryrat 0,

certain numerical conditions should be imposed at the polar axis that is now a pal
domainG’ boundary. Analytic vector and scalar functions have special behaviour [14] n
the singularities that can be exploited when formulating the numerical boundary conditi
Spectral and pseudospectral algorithms developed in [5, 7, 12, 15-19] take into acc
the stated behaviour of analytic functions thus preserving high accuracy. However,
issue of computational efficiency of the discrete Navier—Stokes solver is developec
less satisfactorily, especially concerning the possibility to exploit fast transforms for
evaluations of nonlinear terms (we can refer here only to Bouaoudia and Marcus [20])

In the present paper we do not require the Navier—Stokes solutions to meet ex:
the behaviour of analytic functions at— 0. We require the weaker condition that the
Navier—Stokes equations and their divergence be nonsingular at the origin. Such Na
Stokes solutions satisfy the parity relations (i.e., even-odd propertigsasf functions of
depending on the parity o just the same as analytic functions do. If the sought for infinite!
differentiable Navier—Stokes solutions prove to be analytic their Fourier coefficifnts
may be extended to the functions on the intervaR] R]. In this case the Chebyshev
interpolation polynomials (just even or just odd ones depending on the parijynwdy be
used for the approximation of velocity and pressure with spectral accuracy. Note tha
above arguments on the point of spectral convergence are not rigorous: we don’t kne
the turbulent Navier—Stokes solutions are analytic functions or not. Nevertheless, in Se
VIII we demonstrate multiple numerical indications of spectral convergence when us
the half Chebyshev grid on radial nodes.

In the context of a linear stability problem it is of special interest to devise an algoritl
which reduces the discrete equations to the standard eigenvalue problem, is economic:
is somewhat insensitive to roundoff errors. As for the Navier—Stokes time integration
need an economical and fast solver for the nonlinear algebraic system of equations de!
the velocity components on a new time level. A new algorithm is based on a special ch:
of dependent variables which avoids the singularity problem and provides high accuracy
computational efficiency. In contrast with our previous approaches [7] we require not
the condition that Navier—Stokes equations (in new variables) should be nonsingula
that their divergence should be nonsingular as well. Spatial discretization is trigonoms
approximation irnp andx and Chebyshev collocation m The time advancement scheme
is Crank—Nicolson for the viscous term, backward Euler for the pressure, and a sec
order predictor-corrector type scheme for nonlinear terms. The incompressibility const
is enforced at the new time level. The Poisson equation for the pressure is obtained
discretized Navier—Stokes equations by means of equivalent matrix operations. The fin
of discrete equations can be solved then by means of the influence matrix method wit
correction [21]. As a result, we obtain a numerical method with computational comple:
close to that of typical Navier—Stokes algorithms in Cartesian coordinates.

The results presented are really reproducible: the necessary information (including
plitudes and the structure of initial disturbances, parameters of physical and mathem:
models, etc.) is given in the following sections.
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II. MATHEMATICAL FORMULATION

The stability problem for Poiseuille flow

VO =UO%r)e = —%%(1— r2/R%e,, % =const e = (0,0,1), (1)
in G may be set up as the initial boundary-value problem for the Navier—Stokes equatic
% = —VII + vAV + D(v), (2a)
V.v=0, (2b)
V=R =0, Vo =V2+Vo(r), V-vo=0, (2¢)

wherev=ve + we, + uex = (v, w,u)" is the velocity;D = (D?, D¥, DY)T =V x w;
o= (wr, w,, wx)| =V x Vis the vorticity;I1 is the total pressurgj andv are the constant
density and kinematic viscosity; ang = 0 is a certain initial disturbance of Poiseuille
flow.

Since the flow is homogeneous in tRedirection, Egs. (2) are supplemented with the
boundary conditions

v(r,t) =v(r, ¢, X+ X, 1), (3a)
IT = pg(H)X + p(r, 1), p(r,t) = p(r, ¢, X + X, 1), (3b)
_ d_ef 1 R 2 B 2 "R o
U = ﬁ/0 rdr/O dcpu(r,t)_@/0 U°rdr. (3c)

Here the streamwise period is the parameter of the mathematical modsglit) has the
meaning of a space averaged pressure gradient, and Eg. (3c) is the condition of volum:
(mean velocityJ) constancy.

[ll. BEHAVIOUR OF ANALYTIC FUNCTIONS NEAR THE SINGULARITY

For the formulation of numerical boundary conditions at the polar axis we shall exp
the well known (see, e.g., [14, 16, 17]) asymptotic behaviour of analytic functionsa0.
To make the article self-contained we include the following theorem.

THEOREM 1. Suppose that vectar(x, y) = vx& + vyey, & = (1, 0), ey, = (0, 1), and
scalar p(x, y) functions of Cartesian coordinates are analytic faf + y?)Y/? < ¢ (some
€ > 0). Then as functions of polar coordinates(r, ¢) =ve + we,, f(r,¢)=v +iw,
gr, ) =v —iw, and pr, ¢) satisfy the relationg0 <r < ¢)

qr,@) = > () expling), q=(f,g,p’, @)

n=—oo
fn = rin+d fn(r), On =" Ug,(r), Pn = 1" Pa(r), (5)

where
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Notice that these statements can be derived solely from the analysis of Taylor expan
of analytic vector and scalar functions in the vicinity of the polar axis.

COROLLARY 1. Suppose that the hypotheses of Theorem 1 are satisfied. Then re
v(r, ¢) and azimuthu(r, ¢) components of the vecteimust satisfy

qr @) = Y () expling), q= @ w)', (6)
Qo=r), G=r""TG0) N#0), G =) Gur* @)
k=0

COROLLARY 2. Suppose thatvectelr, ¢, X) = ve +we, +ue, and scalar gr, ¢, X)
functions of cylindrical coordinates are periodic in x with period X and are analytic f
0<r <e(some > 0). Thenfor0 <r < efunctionsv, w,u, f =v+iw,g=v—iw, p
satisfy

qr @) =Y Y G expi2rmx/X +ing),  q=(f, g, pv,w,w’, (8

N=—00 M=—00

fnm = r\ﬂ+1l fAnm(r)v Onm = rln_l‘gnm(r),
(Prm, Unm) = rlnl(f)nm(r)» Onm(r)),
(Vnm, Wnm) = rlm_l(i)nm(r)v ﬁ)nm(r))» n# 0,

(vom, wom) = I (Vom(r), Wom(r)),

)

where

IV. NEW DEPENDENT VARIABLES

Approximate solutions of Egs. (2), (3) we represent by the truncated Fourier series

N M N M
v=Y 3 vErhexpiomx+ing) = 3> vamrg x. ). (10)
n=—Nm=—M n=0 m=0
(Vr':m)* = VEn,—m’ i2=-1, om =27m/ X,

with an analogous representation fafr, t).
Next, we conduct two sequential changes of dependent variables. The first one

low 1ow
fom(r, @, X, 1) = vom + — nm, Onm = Unm nm’
n adg o

> 0, (11)

is well known [14] and widely used to diagonalize vector Laplacian.
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The second is a new one

(Gnm, Bam) =T~ (Unm, Pnm) (n=>0),

~ -1
(Vom, wom) =TI~ (vom, Wom),

o (12)
fom=r"Vf, (>0,

glm = Oim, gnm = r7(Un+1)gnm (n > 1)7
whereoy = 0 andox 1 =1fork=0,1,....

Going over to new variables in Egs. (2) we obtain for certain Fourier mode nyith
m > 0,

90nm

at V|~3nm + VAQnm + dnm(Q)a

(13a)

f o GmUmT’, n>0
ViGm=0 Gum={ MmO N“”‘)T - (13b)
(Yom, Wom, Uom) ' » n=0,

R R
Onmlr=r = 0(n > 0), / Goo(r, H)rdr = / uOr dr,
0 0

(13c)
famlr=0 = Unmlr=0 = Pamlr=0 = 0 (N > 1),

gnm|r=0 =0(n>3). (13d)
Here forn = 0,

(14a)
a2 3 ~
(572 + 755 — o) Uom
2 ! B
Adom = | (& + 22 — o) ibom |
Vzﬁ()m
forn=1,
5 19 3 0.\
Vplm: r_yplms ra_r +2 P1m, &plm ’
0 ~ 10
\% qQum = <r8+4 f1m+*a*glm+28—ulm,
' ror (14b)
) o
(32 + 2o — @) fam
At = | (37 + Hr — o) |
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. 19 (M—on)). 10 M+o)\. 0. \'
Vpnmz (<F8_r - r—2n>pnm’ (r—g +r—2n)pnm’ &pnm> s

9 - 0 - 0 ~
V- Onm = (r—+(n+on+2)) fom+ (r——(n—on—Z))gnerZa—Xunm, (14c)

ar ar
92 20,43 3 (N+1)2—(0p+1)? 2\ f
(W+ oo 7 _O‘m)fnm
_ 92 20043 3 n—1)2—(op+1)? ~
AQnm = (W + "r+ b (-1 rz(an " _ Ol,%])gnm ,
2~

and

V2Unm

_ 92 20m+18 (n?—0?) 5\ -
T \or2 rooor r2 m

for arbitraryn > 0. Note also, that axis conditions (13d) immediately follow from Coro
lary 2.
As for the Fourier coefficients of nonlinearity we obtain

T —0

dnm = (dnfm’ drgm’ drlem) ’ drlem =r ng (n = 0),

df _{rlDva n=20

nm — —(on+1 v 190 w
= (Dpy + £ Div), n>o0, (15)
r-1Dy., n=0

dim = (Dll)m_%Dlwm)v n=1
r—(0n+1)(ng - %%Dg}m), n>1

Notice that in spite of the fact that Egs. (13)—(14) do contain negative powerthaly may
be treated as nonsingular. This statement follows directly from Corollary 2 (new varial
may be represented as a series of even powelgdifie vicinity ofr = 0), an explicit form of
VBnm» Alnm, V - 0nm, and axis conditions (13d). And what is more, not only Navier—Stok
equations (13) are nonsingular but their divergence is nonsingular as well. The latter t
out to be very important for the derivation of special matrix identities—the foundati
of an efficient discrete Navier—Stokes solver (see Section V). We stress in addition
because of the asymptotic behaviour of the nonlinear téié", Eqs. (15) also do not
contain singularities. This asymptotics is the basis of a fast and accurate algorithm fo
calculation of Navier—Stokes nonlinear terms and is analysed in Section VI.

V. DISCRETE NAVIER-STOKES EQUATIONS

To integrate numerically Navier—Stokes equations (13) we exploit the so-called me
of lines separating the time and spatial discretizations.
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A. Time Stepping

Temporal discretization is carried out by means of the implicit second-order scheme

k+1_ k+1 k k+1 k
Atqnm _ pk+1+vA<q +qnm> +dnm<q 2+q )7

V. qk+1

R R (16)
A _r =01 >0), /0 akgtr dr =/0 U dr,

Fk+1 r=0 " Nk+1 r=0 — ﬁﬁ4l“;1l|r:0 =0(n>1), grlﬁ?‘r}l’rzo =0(n>3),
whereqnm Onm(r, @, X, t), pnm Pam(, @, X, t), andAt =t1 — tx is a time step. That
is, we assume the use of a Crank—Nicolson scheme for viscous terms, backward Euls
the pressure, and a certain second order scheme for nonlineadté¥iste that if you
use e.g., a Crank—Nicolson scheme for the pressure and introduce then a new va

pltl = Pkl 4 pK.)/2 you will obtain just the same scheme as in the case of backw:
EuIer. In fact, the pressure term is eliminated then from Egs. (16) (see Section V (D)).
To solve Egs. (16) the following successive approximations method is utilized,

2
<E - VA) qKtl 4 2v r;,';;l = anm, (17a)
V. qk+1 (17b)
()k+1| 0(n>0) /R(ﬁ)k“rdr = /RUOrdr (17¢c)
=R~ - Jo % —Jo ’
® ©® ® ®
forl =05 o= Pantl o =0(>1, gl _,=0(>3), (17d)

wheres=1,2, ..., Sis the iteration counter. Here the right-hand side of Eq. (17a)
a known value being the function of velocity components relating to time lgvehd
preceding iterative loop:

(Sal) kL 4 gk

2
Anm = <—+UA)qnm+2dnm 2

At

If we calculate initial approximation by the formulas

kil gk gk,

then Egs. (17) define the time integration schemeOgi\t?) approximation order for
arbitrary S> 1. For all the computer runs described in Section VIII(C) we utilifed 2
thus carrying out calculations by means of a certain explicit scheme of predictor-corre
type. Exhaustive priori analysis of scheme (17) accuracy and stability may be conduct
by examining the eigenvalues spectrum of the linearized discrete Navier—Stokes equé
(see Section VIII(B)).
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B. Interpolation Polynomials and Collocation Method
New variables)nm, as functions of we approximate by polynomials

Q

Onm(r, @, X, 1) = Z Qnmj((/’v X, t)hj (r), Onmj = c]nm|r=rJ ,
i=0

Q
hj =(20;/Q ) aTatj/RTa(r/R, j=01...,Q (18)

1=0

r = Rcos%,
Here Ty are Chebyshev polynomials of the first kind. It should be stressed that only e
Chebyshev polynomials are used in the expansion (18} avaties from 0 forj = Qto R
for j =0, so that at the origin there is no clustering of collocation pointse possibility
of representation (18) follows immediately from Corollary 2 and formulas (12). Notice a
that spectral representations (18) do not meet exactly pole conditions typical for ana
functions. We require the weaker conditions (13d) to be satisfied. If the sought for infini
differentiable Navier—Stokes solutions turn out to be analytic they may be smoothly exter
to the functions on the intervaHR, R] thus providing spectral convergence when using
half Chebyshev grid on radial nodes.

We continue by defining theQ + 1) x (Q + 1) matrices

=00=1/2, o=101+#0,0Q).

d?h; 1dh;
Cj = a2 2] ) i = —d—] )
r r=r r ar r=n
dh; hj(r) —h;(0) (19)
D| =r—] ) S = J )
: d r=r : rz r=r
E|j:5|j, |,j=0,1,...,Q

being the finite-dimensional analogues of the corresponding differential operators f
Egs. (14). So, for example, we use the following approximation for the values of the sec
derivative,

3%0nm
ar2

Q
:ZCIanmj, |=01,...,Q,
I j=0

r=r

and similar formulas fot1/r)d¢nm/ar |r =, andr d0nm/dr |r=r, -
As to the operator Ar 2, we obtain with regard to axis conditions (13d)

Zgnm|r = Z SJ gnmj» | = 0, 1, ey Q» (20)

for arbitraryn > 3. Since an equalit@nm/r > = (§nm — Gnmlr —0)/r ? is correct forn > 3,
formulas (20) may be used to approximate expressitms-[1)2 — (on + 1)21(1/r?)Gnm
in Egs. (14c) for arbitraryn > 1. The reason is that far=2, 3 (whengnm|r =0 # 0) an
expression in square brackets becomes zero. Formulas (20) may also be used to appro
expressionsl/r?) f .. (1/r){nm, and(1/r2)p,, in Egs. (14c) whem > 1.

In spite of the fact that Egs. (19) do contain negative powers cbmputations may be
conducted without any loss of accuracy provided that recurrence relations for Cheby
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polynomials (see, e.g., [22]) are exploited. The resultant computational formulas for me
elements we present in Appendix A.

For the discretization of Egs. (17) inve make use of the pseudospectral technique wi
collocation nodes; defined in(18). Finally, we obtain the following set of semi-discret
equations (the casgy,, n > 0):

2
(EE - va)Fh +RPlI = 7980+ 151 — 8n)diq + 4,

(21a)
1=0,1,...,Q, Fo=0, FQ=O(n>1)
2 [¢] g 9 g g
ZIE_VL G|+ RP|| = 705IO+rQ(1—5n1—3n2—5n3)5lQ+a1 ,
(21b)
l=0,1,...,Q, Go=0, Gog=0(n>23
2 u a u u u
—E—vL Ui+ —R =708I0+TQ(1_3n1)5|Q+31 ,
At ax (21c)
1=0,1,...,Q, Ug=0, UQ=0(n>1)
0 =
HFli + H9G) +2-U; = 0. |={8’1’“"8’_1” L
X 9 tERER R ] bl 9 (21d)

Po=0 (n>1).

Hererlf , rlg, 7'(I =0, Q) are the so-called tau terms [23] having the meaning of equatic

residual at the boundaries of domaing); is the Kronecker delte? def (Py, Py, ..., PQ)T,
© ©® def (s)
Pi(p.x) = 2Ppsii=2p Kt ;i F £ (Fo, Fi,....FQ)T, Fj(p.x)= f it analo-

gously forG andU. Termsaif ,a%, anda} include the discretization of nonlinear terms anc
are known values at a new time level:

Skt gk
a = (éE + va>Fk|| + 2dnfmI % ,
def T ~k f (22)
FC= (RS Ffo o FS) s Ff=fomp O =0,y

and similarly fora?, a'. Equations analogous to (21) and correspondimg® andoy, = 0
we present in Appendix B.

In the casen>0, (Q + 1) x (Q + 1) matricesL, L9, LY, Rf, R, H', andHY are
defined by formulas

Lf 20 + 3 (n+ 12 — (o + 1)? )
() =e+(Gnit)e- ("t ™) smae
Lg_{C—i—B—a,an, n=1

C+@m+3B—((N—12— (n+1DI)S—e2E, n>1,
(23)

RO _ D + 2E, n=1 o B. ne1
| B+(@n+nS  n>1, | D+(@n—n+2E, n>1,

Rf = B+ (6, — n)S, Hf =D+ (on+n+2)E.
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Grid functionsF, G, U, andP are strongly coupled in Egs. (21). The latter makes
somewhat difficult to suggest a fast and economical method of solution. On the o
hand, suppose there exists an efficient solver for Egs. (21a)—(21c) provided #nat
known values. In that case it is desirable to reduce Egs. (21) to the form that allows
evaluate firsP irrespective of, G, andU. The possibility of such a solution procedure fol
Egs. (21) is considered in the following two subsections and in Section VII.

C. Special Matrix ldentities
Easily verifiable differential identities
V- AQum= VAV -tm), V- VPym= VP, .M =0,

have in casa > 0 the following semi-discrete analogues

P ad
HILTF+ H9L96+2&L“U=L“(HfF+ HgG+2—8XU), (24a)
1
5(H'R' + HORI — 207 E)P = LVP. (24b)

Again, the casea = 0 is considered separately in Appendix B. Formulas (24) follow fror

THEOREMZ2. Suppose that differential operators
d? 1d d
= B=-— D=
dr?’ rdr’ dr
and operator S

1
sh= 5 (h) —h())

are defined on interpolation polynomials

Q
hj() =(20/Q Y aTarPTa(r), j=01,...,Q,

|=0
ri =cosmj/2Q, o0=0q9=12  a=1(1#00Q).

Assume thatXY) is one of the following ordered operator couples:

(CB), (BC), (CD), (DC), (CS), (BD), (DB),
(B9, (D9S), (SD), (CC), (DD), (BB).

The matrix identity
Td _ xdyd
then holds in the case of matriced X9, and T with elements

Xﬂ = th|r=r|v Y|? = th|r=r|s (Td)lj = Xth |r=r|~
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Proof. It can be easily shown (see, e.g., [22]) that the result of operationQyigh D,
or Son polynomialsTq(r), g =0, 1, ..., Q may be represented by a (truncated) series
Chebyshev polynomials of degree not higher thgn2enoting withX*, ¥¢ the matrices
of expansion coefficients, we obtain then

Q
2
X|dp = th|r=r| = % Z ’T2q’(rp)XT2q’(r)|r=r|
q'=0

Q q
2 -
=2 > 0aTe(rp) D ngnTzn(rl), (25a)
Q q'=0 n=0
d 20j 9
Yoi = Yhil=, = 5 LY 0qTa(ry) Z VamTam(p). (25b)
q=0

T = XYhjlroy, = =) 04 T2 (1) Vg X Tan (1) (25¢)

m
0 n=0

o
3
I

o\%’
O
MQ

o)

Multiplying X9 by Y9 and taking into account Egs. (25a), (25b) we have
XYy = > X5

Q aq Q Q
20i ~d ~d | 20q
= i ZZZ Xq/ﬂTZ”(n)QqTZq(rJ)qu gq § 0pTog (rp) Tom(rp) | .
p=0

20 Q a m
XYy = 2SS TS 0q Tag ()Y g K Tan(r). (26)

Comparing Egs. (25c¢) and (26) we obtain
Td = xdyd,

This completes the proof of a theorem.
One can easily deduce from Theorem 2 and formulas (19) and (23) the validity of me
identities
HILT =LYHT, HILY9 = LYHS9, (27a)
HfRf = HIRY = LY + &2 E, (27b)

and, finally, the validity of relations (24).

D. Discrete Poisson Equation for Pressure

We now wish to use (24) to reduce Egs. (21) to the form with almost decoupled grid fu
tionsP, F, G, U and tau terms ', z9, zY. In this section we consider the casg, n > O:
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equations corresponding to=0 anday, = 0 may be easily derived using additional for-
mulas of Appendix B.

We operate wittH , H9andd/ax on Egs. (21a), (21b), and (21c), respectively. Summir
up the results and taking into account Eqgs. (21d) we obtain then

9 O T P TRN SI S f
LYP| = &QU‘FEH al +§H a’l + ETO HIO+§TQ(1_SH1)HIQ

1 1
+ 570 Hio + 579 (L — 81 — 8n2 — Sna) Hiy,

l=12....0n=1), I1=12....Q0-1(n>1), (28a)
H'Fll.o+H9G|0=0, Po=0(n> 1),

wherea' &' (aof, alf, ces a(g)T and analogously faa9. Supplementing these equations by
the ones following from (21)

2
(At —vL f) Fii+R'Pl = a" + 19 810 + 74 (1 — Snp)dia, (28b)

|=O,1,...,Q, F():O, FQ=0(n>1)

2

<E—UL9)GI| +ROP| =& + 19810 + 13 (1 — 81 — Sn2 — 6n3)8ig,  (28c)
1=0,1,...,Q, Go=0, Gg=0(n>23

9 1 0,1...,0Q, n=1

1
—U =—-ZH'F=ZHG|, |I=
aX 2 2 0,1,....,0-1 n>1,

(28d)
Ug =0, UQ:O(n>1),

we obtain the set of Egs. (28) equivalent to (21) and allowing the solution by means of
efficient influence matrix technique with tau correction [21]. However, when applying t
technique to (28) we are faced with certain peculiarities. We briefly discuss the situatic
Section VII.

For the discretization i andx we make use of Galerkin trigonometric approxima
tion. In this case the unknown quantities afg,(t). i = 1, 2, 3, 4 —the values of Fourier
coefficients in collocation nodes,

1 3 .
Unm(T1, @, X, 1) = (Qin COSUmX + Qs SiNetmX ) COSNg

+ (%), cosamx + gl sinamx) sinng,
and analogously fop (t) and components of nonlinearitg®- -9)") (t).

It should be stressed that the reduction of Egs. (21) to the form (28) became possiblc
due to the new change of variables (12). Otherwise, the differential operators of Egs.
and corresponding collocation matrice$9Y, H "9, R"9 may have a form not satisfying
relations (27), (24). As a result, the right hand side of Eq. (28a) will be the function
unknown value§ 1, GX*1, andUX*!, the decoupling oF, G, U, andP will not happen,
and there will be no opportunity to use influence matrices. Certainly, the aforesaid is
only if animplicit scheme is utilized for the viscous terms of Navier—Stokes equations. W
an explicit treatment of viscous terms one can make use of much simpler solution procec
[7]. However, the latter essentially changes the stability boundary of the scheme.
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An overall algorithm efficiency depends not only on the quality of a discrete Navie
Stokes solver but also on the availability of a fast and accurate method for the evaluatic
nonlinear termsinm, in Egs. (22). Such an algorithm was developed and we present i
the following section.

VI. FAST AND ACCURATE COMPUTATION OF NONLINEAR TERMS

The calculation of nonlinear terngs; 9! defined by (15) may be ill-conditioned when
r — 0. Negative powers afalso occur in the formulas for vorticity components necessa
forthe DV, D*, andD" evaluation. Nevertheless, the algorithm presented below allows
to perform fast calculations of the Navier—Stokes nonlinear terms without loss of accur

Boundedness and smoothness of functidf§" (the requirement for high accuracy
calculations) follows directly from Egs. (13a), (14), from the asymptotics of new variab
atr — 0 (Egs. (9), (12)), and from axis conditions (13d). To avoid singularities the n
algorithm exploitsDii,, Djyn + 7 5 Diyy @ndDy, — £+ Dy, representations as a series o
positive powers of . More exactly, the primary terms of such representations are explici
extracted and used then to avoid singularity problems in calculating the valag$-8f
Since each of the functiorid},,, Dy, D%, is expressed in terms of pairwise products o
velocity and vorticity components the straightforward way to obtain the desired asymptc
is to evaluate directly the corresponding convolution sums. However, such an approach
little use due to computational inefficiency. On the other hand, the routine implementa
of a pseudospectral technique (that allows fast Fourier transforms to compute prod
is completely useless since the behaviour of velocity and vorticity Fourier coefficient:
r — 0 strongly depends on azimuthal wavenumbers (Corollary 2). Below we sugge
certain combination of spectral and pseudospectral approaches providing that the r
amount of computations is carried out by means of fast transforms.

We clarify the key aspects of a new algorithm considering the calculation of Fourier
efficients(d“)ﬂr)n,, m,n>0;1=0,1,...,Q,i =1, 2,3, 4 corresponding to the streamwise
component of nonlinearity. For this purpose we rewrite Eq. (10) in the form

N M N N
= Z D Vam(r @, X, 1) =) V(. x,t)cosng + ¥ V5T, X, t)ysinng.  (29)
0 m=0

n= n=0 n=1

Similarly, we introduce functiong$-S(r, x, t), (d4)$-S(r, x, t). With regard for (15) we can
obtain then

N
DU(r, 0. X, 1) £ v, — woy, = Z ron((dY)g cosng + (d)Fsinng). (30)
n=0
Next, we writev, w, wr, andw, as

Ay

AL

N
v =g+ v Cosp + vYsing +1 Y 17 (S cosng + vy sinng), (31a)
n=2
@y =T(@y)g +aC cosp +aSsing + 1> 1 ((@,)5 cosng + (@,)5sinng), (31b)
n=1

By

By
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and analogously
w=rwS+As+rAs, o =r(w)S + Bs+rBy, (31c)

where Az and A4 result fromA;, A, by replacingv$ S onto w5, B4 from B, by replac-
ing (w,)$ S onto ()5, andBg = —aScosy + a© sing. Herev$ S(r, x, t), w$S(r, x, 1),
(0r)$S(r, X, 1), (@,)$S(r, x, 1), a%(r, x, t), andaS(r, x, t) are smooth regular functions of
ther-variable defined by the formulas

A
=g, aSS= J(Frn s 4430,
aCs— oS4 %%41: S,
@f = —3x75.  @FS =5 1T (32)
(@)= ufzc %%(Nfc—?c),
@ =25 -2l @ppe=llies tlges
5= e M54 69 —on'iy = [0

By substituting expressions (31) into Eq. (30) we directly obtain

1 _ 1 _
A5 x, 1) = Za° (vf — wy) + 5807 + wy)
+1((C12)§ + (C21)§ — (Caa)g — (Caa)§)
+12(05 @) — w§ (@0)§ + (C22§ — (Caa)§). (33a)
(@DG3(r, X, 1) = 801 (25505 £ aSCw§ + 07 (@) — wi (@)

+ (1 = 8nDr 2 (v S(@y)§ — Wy S(@r)g)

1 ) — — — —
+ ga(@ S+ 99) %25 (55 5)) + (@) 55§ - @ i)

2
+1r17((C2)5 3 + (Co)5 3 + 1 (C2)§° — (Caa)®
—(Ca)y®—1(Ca)5®)., n=12...,N, (33b)

where functiongCi;)$S(r, x, t) are defined by the relations

2N 2N
D (Cip)5 cosng + Y (Cij)ysinng = A B;. (34)
n=0 n=1

From (34) and the explicit form of functions;, B; it follows that almost all functions
(Ci))$ S of Egs. (33) may be calculated by means of simple formulas with a minimal num
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of arithmetic operations involved. For example, from Eqgs. (31) and (34) it follows that

1
(C)§ = Sr r=on (vS ()51 — V2(@p) 5 1) (1 — 8no — 8n1)

=

+ Zri-on ( (a)w)n+1 + g (a)w)ml) (1 —=dnn), (35)

N

and similar formulas fo(C1)3, (C21)$'S, (C34)$S, and(C43)$S. As to functions(Cy2)§+S
and(Ca4)$ S, an ordinary pseudospectral technique with tf@-8ile to avoid aliasing may
be utilized.
Summarizing, we suggest the following computational procedure for the Fourier co

cients of nonlinearity:

(1) Using qnml we compute the values of function§ S(r, x, t) at the set of points
rn=Rcos(xl/2Q),1 =0,1,...,Q; X =iX/2M,,i= — M, + 1, —M,+2,..., M,,
2M,>3M + 1:

M @ . ©)) .

qn qnml aTmi qnml oTmi
(I’| X|,t)— E [( )COS + < )Sln .

(qn ) G Mo Nagm/ M

(2) Using discrete analogues to relations (32) we calculate the values of functi

05 S, WSS, (0)§S, (0,55, a%S. For example,

(36)

Q
(@S, %, H=nY §Ur;, %, 1

j=0

1 M
~(2
#32 (em(F-gi) s

=0

(fom — G cos

MT'), n=1 (37)

Note that discrete Fourier transforms in (36), (37) may be evaluated by the Fast Fol
Transform algorithm.
(3) Next,(d")SS(ry, x,t),n=0,1,..., N are calculated according to (33).
(4) The desired Fourier coefﬁmer(tﬁJ)(” miare obtained finally by means of the inverse
discrete Fourier transform.
In addition, we briefly consider the evaluationdf andd? components of nonlinearity.
Similarly to (31) we represent the streamwise components of velocity and vorticity in

form
() = () el (g ) eome+ (g ) s
wx (@05 @S ) T L@og )
2 us
+r ren cosng + sinn 38
Z K x>0> ¢ <<x>n> *"} (39)
where
GC-0g,  aes—uPs,  aos= Ui
0 — Y0 1 — Y1 > n - r2 )

_ - 0
(a)x)g = 2wg +r ar

_ 1(f3° g 19 zsc 19,
(wx)ﬁ'3=¢§< +2)+ = (—on =2+ 2o fT =22 n=1

. _ 0 »sc 10 _
0S5, (@07° —;2(41‘ +ra—rf1 —Fa—rg?C), (39)
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We stress that analogously (32), formulas (39) define smooth regular functionsrof tr
variable. As it follows from axis conditions (13d) and Egs. (18) the evaluation of the
functions may be carried out without any loss of accuracy.

According to (31) and (38) we obtain

(Dv) d=ef (wwx — wa) _ ( u_)(f(cEX)O —acﬁc ) cosg + ( _S(C;x)g_asaoc >Sin§0
Dv Uwr — vwy —Elc(ajx)o —aSUO —V7 (wx)o +aC—C
N
(RN @Hs .
+ r"n“[ ( n > cosng + ( " ) smngo}, 40
nz::o @y @3 )

where(d")$-S and(d¥)$ S are defined by formulas similar to (33). As to functiqdd )$-S
and(d9)$-S it follows according to (15) that

@dH$sS = @d)Ts+ (dw)f'C @05 3,

@HES = (@)SS+ @d")SC, n>1,

(d95° = £(@05 80 ~ CS_C—H (@)T°F @d)1°),
@SS = @)HSSF @SS, n>1

In all other respects the calculation of the desired Fourier coefflc(elr‘n and(dg)ﬂ,’m
o

is analogous to the evaluation @), considered above.

VII. IMPLEMENTATION OF INFLUENCE MATRICES

An efficient solution procedure for the equations similar to (28) was originally sugges
in Cartesian coordinates by Kleiser and Schumann [21]. Thereupon it was an obje
modifications (see, e.g., [17, 23, 24]) and is known now as an influence matrix method
tau correction. However, Eqgs. (28) possess certain peculiarities associated with di
boundary conditions at various azimuthal wavenumbers. We briefly consider below
principal aspects of influence matrices implementation in this case. In what follows
limit ourselves taxy,, n > 0. Equations corresponding &g, = 0 andn = 0 can be obtained
in a similar way using formulas from Appendix B.

Solutions of Egs. (28) we seek in the form

PI Pll P|2a P|2b PIZC
Fl=|FR|+o| F2 |+ F2 | +ed@—smw| FZ
G G} G2 G G
P|2d P|3
+ 731 =8 — 2 —Sna)| B | +Po| F® |, (41)
G G?
l=12,...,Q¢ for P, F,; l=1,2,...,QqforG,

where

def [ Q, n=1 def [ Q, n=123
Q-1 n> 3.
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Vectors PX %' (P§. Pr..... P§T as well asF*, G¥(k=1, 2a, 2b, 2c, 2d, 3) are the
solutions of the following discrete boundary-value problems:

) 1 1
LUPY = —a' + ZH'af| + ZH%? l=12,...,Qf,
I axa' -|-2 a||+2 I, 2, ..., Qf (42a)
Pi=0 Py=0(n>1),
2
“E—wL" )Py =-R"PY +a", 1=12...,Q;,
(At v ) i I+ 3 Qs (42b)
F¢=0, Fy=0(n>1,
2
—E —vL9)GY, = —RP? 9 1=12...,Q,
<At v > I Il + & Qg (42c)
G%:O, G%:O(n>3);
LUPK, =38, 1=12...,Q;,
P =0, P§=0(n>1),
2
—E—vL" ) ==RPY;, 1=12...,0Q;:
At k K (43)
FE=0, F5=0(n>1,
2
(EE—ULQ G =R, 1=12...,Q,

GE=0, GY=0(n>23),

wherek takes the valuesa2 2b, 2c, 2d and 2 = H,[, S = HJ, = ng, §4=HY;
LYP3, =0, 1=12.., 0,
P =1, Pd=0(n>1,
2
—E-vL" )P =-R'P® l=12,...
(At v ) I I .2,...,Qx,

(44)
=0, F=0(n>1),

2
(AtE—ng)G?’h = -RP%, 1=12...,Q,,
Gi=0, G,{=0(n=>3).

The unknown coefficientsof, ré, fg, rg, and Py (the latter being the value of the total
pressure Fourier coefficient on a pipe wall) can be evaluated from

H'Flico+ H%Glo=0, n>0, (45a)

—vL'Fl_o+ RPll_o—1 —a; =0, n>0, (45b)
—vL9G|i_o+ R%Po—7d —a] =0, n>0, (45¢)
WL g+ RPPl_g -6 —ab=0 n>1 (45d)
—vL9G|i—q+ R%P|l_g— 13 —a3 =0, n>3 (45€)

Equations (45) directly follow from (28). In cage=1 the necessary parameteés, 15,
andP, are evaluated from the first three of them. Ret 2, 3 the desiredof , ré’, ré, P, can
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be obtained as a solutions of Egs. (45a)—(45d). Wher8 we calculatecof, 15, r(;, rg,
and Py by means of all five equations (45).

Equations (45) have to be resolved at each timestep and iteration loop. They ma
reduced to the form

AX =D,

wherex = (rof LTS r(;, rg, Po)T, Aisthe constant matrix (its own for each pair of wavenurr
bers (, n)) and the right sidé depends on time being the functionfef, G*, P%. Matrices
A~1 (their maximum order equals 5) may be evaluated only once in a pre-processing :
The same is true for grid functio&, G, andP¥, k = 2a, 2b, 2c, 2d, 3—the solutions of
Egs. (43), (44).

Similarly to (45), Eqgs. (42) must be solved at each timestep. An explicit form of matri
LY, (2/At —vL ) and(2/At — vL9) (see Egs. (23)) allows one to exploit for this purpos
an efficient collocation-diagonalization technique [25].

VIII. NUMERICAL RESULTS

Numerical verification of the algorithm includes two issues. First, we compare sp
tral characteristics of the pipe Poiseuille flow stability problem with those of the discr
linearized Navier—Stokes operator. Second, we present results of direct Navier—Stokes
lation of laminar-turbulent transition in a circular pipe at Reynolds nuriReet JD/v =
4000, based on the mean velocity (see also Eq. (3¢)) and pipe diabet@R. In this
section, unless otherwise stipulated, the centreline velocity of parabolic base flow and
radiusR are used as units of velocity and length. Computations were carried out on
Hewlett Packard VECTRA PC and Sun SPARCcenter 2000.

A. Pipe Poiseuille Flow Linear Stability Problem

Equations (13) have stationary solutions

oo =Woo=0, Uoo=Ur)=1-r2 px(t) = —4v,
. 1. 05 (46)
Poo = E(U )¢ + const

which describe laminar fluid flows ié.

We linearize (13) about arbitrary solution (46) neglecting the terms being quadratic v
respect to disturbance amplitudes. In addition, itis convenient to exploit dependent varic
vh o (r,t) and gl (r, 1) instead of functionsnm(r, ¢, X, t), gam(r, @, X, t) (see Eq. (10)).
Conducting spatial discretization as it was recommended in previous sections we ol
the following linear stability problem for pipe Poiseuille flow (for definiteness we consic
below the casem # 0,n > 0),

AR = —iamU°(r) R — RTPI + vL'Fl + 1 80+ 76 (L — 8nD)dio,  (472)

1=0,1,....Q, Fo=0 Fo=0(n>1)

AG| = —iamU°()G — RIP|| + vLIG|, + 810 + Tg(l —8n1 — 82 — 8n3)dig, (47D)
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1=0,1,....Q, Gg=0, Gog=0(n=>3)

A = —iamUO(mU; + (PR +aGi) —iamP + vLUUJ + tddi0 + 151 — 8n1)diq.
(47¢)
1=0,1,....,Q, Uy=0, Ug=0(n=>1
HfF||+HgG||+2iOémU|=0, |=0,1,...,Qf,
(47d)
Po=0(n> 1),

wherev=1/Re a =1(n=1),a =rZ(n> 1); Qs is defined in (41)F, G, U, P are the
disturbances of the base flow (46) corresponding to wavenurabers F = (Fg, Fy, ..
Fo)T, R =e fl_(r.t) and analogously fo&, U, P.

Equations (47) determine stability characteristics of pipe Poiseuille flow in the lin
approach. Once these equations are reduced to the standard form

L)

AX = TX, (48)

eigenvalue§ and eigenvectorsmay be found by means of the QR algorithm. The finite st
Xk = Xk(cxm, n, Re Q), rexk > reXkH, k=12, ..., K <ocoisusually considered as an ap-
proximation toa priori unknown eigenvalues (am, N, Re), k=1, 2, ... of the differential
problem.

Reduction of Eqgs. (47) to the canonical form (48) is an important stage of the solu
procedure. Below we consider a reduction algorithm that is economical and weakly sens
to the round-off errors. As far as we known, similar algorithms were not used before, €
in Cartesian coordinates where the implementation of influence matrices is straightforn

We multiply Eq. (47¢) by Ry, and operate with matriced f, H9 on Egs. (47a), (47b),
respectively. Summing up the results we obtain (making use of Eq. (47d) and me
identities (24)) the following discrete Poisson equation for pressure:

Q
LYP)y = a2U°(r) Y, ——Iamz H{ U )Fj + HIUC(r)G))
j=0

1 1
+iom(r?R +aG)) + 5% Hl{)+§rg(1—5nl)ng

1 1
+§f§H|%+Erg(l—anl—anz—ang)ngQ, l=12...,Q:. (49)

To expresdJ and tau terms; , ré, 15. 7§ throughF, G, andP we utilize Egs. (47a),
(47b) forl =0, Q and equalities (47d). After substituting the result into the right side |
Eqg. (49) and exploiting the remaining equations from (47a), (47b) we arrive at the equiva
spectral problem of the form

Lup, = ATF + AG|,, |1=1,2,...,0Q;,
(50a)
(H'F + H9G) |0 = 0, Po=0(n> 1),
AR = —ianUor)F —R'P + L F,  1=1,2...,Qs,
(50b)

Fo=0, FQ:O(I’]>1)
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2G| = —iaqUO()G) — R9P| + vLIG|,, |=1.2,...,Qq,
(50¢)
Go=0, GQZO(H>3).
HerelYis areal andAf, A9 are complex-valuedQ + 1) x (Q + 1) matrices.
Solutions of Egs. (50) we suggest to seek in the form
F\ _ [(F N F2
G) \G! G? )’
whereF?!, G? satisfy Egs. (51),
Lupl, = ATF + A9G|,, 1=1,2...,Q,
(51a)
P=0, P{=0(n>1
MRt = (miamU°0DF + oL FI) = RTPPY,  1=12...,Qy,
(51b)
F& =0, FG=0(>1)
AGE = (—iamU°(r)G +vL9G|) — R9PY;,  1=1,2,...,Qq,
(51c)
G} =0, GL=0(n>3
andF2, G2 are the solutions of
LuP2, =0, 1=12...,0Q;, (52a)
(HfF 4+ H9G)|_o = 0, PE=0(n>1), (52b)
AR2=—-R'P?;, 1=12...,Q,
(52¢)
F¢=0, FZ=0(n> 1),
AGE=—-R9P?, 1=12...,Q,,
(52d)

G3=0, G%3=0(n>3).

Next, we expresB? throughF andG by means of Eq. (51a) and substitute the result in
the right hand side of equalities (51b), (51c). Thus, we obitath AG* as the functions of

F andG. Similarly, the relation betweenF2, AG? andF, G is given by the relations

AF2=—«R'h), 1=12...,Qy,

AGE=—«R%n|;, 1=12...,Qq,

where vectoh=(hg, hy, ..., hQ)T is the solution of a problem
LYhy =0, 1=12...,Q,

ho:l, hQ=0(n>l).

Coefficientc as a function of!, G! (and viaF!, G* as a function of, G) can be evaluated
from

(H'F? + H9G?)| o= — (H'F' + HI9GY)| .
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As a result we obtain then

9)-5(5:0) ()

whereT is a certain complexQs + Qg) x (Qf + Qg) matrix. If we eliminate theF;
component of vectdr from (53) (components ¢F are linearly dependent according to the
first equation of (52b)) we finally come to the spectral problem (48) with

X = (Fp, Fs,..., Fg, Gy, Gz,...,GQg)T.

Table 1 illustrates exponential iQ convergence of the pseudospectral discretizatic
used. Our results agree with those of [15] = —0.023170795764- i10.950481396668
and [18](A; = —0.023170795- 10.950481397. Data given in Table 1 correspond to high
accuracy calculations with the roundoff error of about one part i5. Motice also that
the convergence rate of our algorithm is comparable with those of the spectral method
Table on p. 340].

Following previous authors (see, e.g., [12]) we agree that the computer roundoff er
should be distinguished from truncation ones. In Table 2 we show the effect of both ty
of them on the eigenvalues evaluated by means of our algorithm. Above all, we poir
the extremely weak sensitivity of the algorithm to the roundoff errors. Indeed, from twc
three true digits are permanently observed in the case of low precision (round®f’)
calculations for a wide range of numbers of collocation points. Note §hat 1=181
corresponds to the interpolation polynomials (18) incorporating Chebyshev polynormnr
Ty,1=0,1,..., Q of a very high (up to 8 =360) order. These results are much bette
than the typical roundoff sensitivity of spectral methods illustrated by Orszag in [26, Tabl
p. 696].

We stress that weak sensitivity of the algorithm to roundoff errors at I@geof spe-
cial interest in the context of reliable approximation of Fourier modes with considera
streamwise and azimuthal wavenumbers. Table 3 illustrates the necessity to use much
resolution foram, N> 1: No one correct eigenvalue can be calculated with 31 collocati
points compared to 7 true digits of atam =n=1 obtained withQ + 1= 21 collocation
nodes (Table 2). In addition, as it follows from Table 4, only three leading eigenvall
Ak, k=1, 2, 3 can be properly calculated with 61 collocation pointsdr=n = 20, even
with 11 true digits forr, at the same resolution (Table 3)! Such behaviour must be tak

TABLE 1
Convergence of the Least Stable Eigenvalue fdRe=9600,aty,=n=1

Q+1 reg..) im(1.)
21 —0.02318 —0.950497
26 —0.0231710 —0.9504815
31 —0.023170795 —0.9504813961
36 —0.023170795770 —0.950481396671
41 —0.02317079576499 —0.950481396669905
46 —0.02317079576500423 —0.950481396669903171
51 —0.023170795765004215199 —0.95048139666990317950
56 —0.0231707957650042152055 —0.9504813966699031794843

61 —0.0231707957650042152055 —0.9504813966699031794843
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TABLE 2
Influence of Round-Off Error on the Leading Eigenvalue A;; Re=4000,a,=n=1

Q+1 Roundoff~ 107 Roundoff~ 10-16 Roundoff~ 10735

21 —0.0358—0.9233 —0.0357935-0.9233155 —0.03579355-0.923315%
31 —0.0361—0.9233 —0.035793677913-0.923314870453 —0.035793677912-0.923314870454
41 —0.0356-0.9233 —0.035793677911-0.923314870452 —0.03579367791073235840.92331487045189852008
51 —0.0359—0.9233 —0.035793677911-0.923314870452 —0.035793677910732357986%.923314870451898520388
61 —0.0358—0.9234 —0.035793677911-0.923314870452 —0.0357936779107323579868.9233148704518985203883
71 —0.0361-0.9236 —0.035793677911-0.923314870452 —0.0357936779107323579868.9233148704518985203883
81 —0.0357—0.9233 —0.035793677911-0.923314870452 —0.035793677910732357986.9233148704518985203882

121 —0.0355-0.9231 —0.035793677909-0.923314870452

181 —0.0363—0.9244 —0.035793677916-0.923314870451

201 +0.0258-0.3496 —0.035793677907-0.923314870455

into consideration when examining the role of degeneracy [11] or transient growth me
nisms [12] in triggering transition by means of direct Navier—Stokes integration. Numer
technigue insensitive (to some extent) to the roundoff errors at a large number of colloc:
points (Chebyshev polynomials) may be useful in this case.

B. Navier—Stokes Solver: Accuracy and Stability a priori Estimates

In the previous section we examined the Navier—Stokes eigenvalue spectrum in orc
carry out the preliminary monitoring of the suggested spatial discretization. In particula
was shown that there are no spurious or parasitic modes among the numerical eigensol
of the linearized equations.

Nevertheless, additional errors can be introduced both by the time advancing sct
and the solution procedure for the discretized equations. A convenient way (see,
[27]) to check the discrete Navier—Stokes solver accuracy, stability, and sensitivity to
roundoff errors is the evaluation and comparison of the eigenvalue$\séis,, n, Re)},
{I,- (em, N, Re Q)}, and{j\,- (om, N, Re Q, At, S)} the last being the spectrum of fully dis-
crete Navier—Stokes equations linearized about their stationary solutions. Nonlinear
culations usually show [7] that priori estimates of accuracy and stability based on tf
reasonable closeness of the above-mentioned eigensolutions permit us to select ad
values ofQ, At, Sdepending on the parametd&g X, M, N of the mathematical model.

We continue by explaining the technology{énj } evaluation and by analyzing the results
obtained. It can be easily shown that formulas (46) taken=at, determine stationary

TABLE 3
Convergence of the Least Stable Eigenvaluee=4000,a;, =n =20

Q+1 re.,) im(i.)
31 —0.839 —12.642
41 —1.0395775 —1.476281
51 —1.039578126 —1.476280146
61 —1.03957812187 —1.47628014065
71 —1.03957812185209 —1.47628014063815
81 —1.03957812185208327 —1.476280140638094303
91 —1.0395781218520833192 —1.4762801406380943001

101 —1.0395781218520833192 —1.4762801406380943001
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TABLE 4
Ten Leading Eigenvalues{xk}&gl Depending on Spatial ResolutionRe = 4000,a,, = n = 20

Q+1=41 Q+1=61 Q+1=81 Q+1=101
1 ~1.0396—1.4763 ~1.0396—1.4763 ~1.0396—1.4763 ~1.0396—1.4763
2 —1.1738-2.3054 —1.1738-2.3054 —1.1738-2.3054 —1.1738—2.3054
3 —~1.1764—14.1882 —1.6561—2.5602 —1.6561—2.5602 —1.6561—2.5602
4 ~1.1789—13.4565 —2.0152—15.6131 —2.0290—2.8932 —2.0290—2.8932
5 —1.1870—14.8930 —2.0169—16.0459 —2.1021-17.8053 —2.1021-17.8053
6 —1.1933-12.7022 —2.0216—15.1640 —2.1310-3.4564 —2.1310-3.4564
7 ~1.2054—13.8031 —2.0274—16.4586 —2.2299-3.8621 —2.2299-3.8621
8 —1.2108—14.5224 —2.0290—2.8932 —2.2998—17.6039 —2.2998—17.6039
9 —1.2126-13.0588 —2.0356—14.6982 —2.3038—17.9873 —2.3038—17.9873
10 ~1.2128-15.5661 —2.0476—16.8493 —2.4976—17.4025 —2.4976-17.4025

solutions of Egs. (21). We linearize (21) about these solutions. The result can be writte
(the casen > 0O for definiteness)

2 2
<At vL ) FY )+ R | k+l|I =79 810+ 7o (1 — 8n)dig + (E+vL )Fkh
—iamU %) F* 4+ XTUK|
. (s=1) (s-1)
—iamUO(r) F ML Xy ey, (54a)

(S) (S)
1=0,1,...,Q, Fsl=0 F¥l=om>1

2
(At _ ng) G¥1| + RY Pk+l|| _ Tg(SIO + ‘[Q(l — 8n1 — Sn2 — 6n3)diQ
2 .
+ (E + vL9> GX|| — iamU%(ry) GK + X9UK),
. (s=1) (s—1)
—iamU°(r)) G L X9y k), (54b)

(s)
1=01,....Q &0 &Y'=0mn=>3

2 2
(E —vL ) k+l|l +|OlmP| _783I0+75(1_8n1)3IQ+ (E‘FULU)Ukh
— iamUO(l’|)U|k + I'|2 F|k + a| G|k

(s

. (s-1) (s=1) —1)
—ianUon) U 12 F [l ra G [ (540)

(S), (S),
1=0,1...,Q Uk'=o0 U&'=om=>1

HIFOKL) + HIGOMY 4 2iaU@Ft =0, 1=0,1,...,Qy,

54d
POI=0 (>, 540
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wherev =1/Reg =1(nh=1),a = r,2 (n>1;s=12,...,Sistheiteration counter;
FX, G¥, UX, andP* are the Fourier coefficients of disturbandes= (F§, Ff, ..., F&§T, R
= f (1, ) and analogously foB*, U, andPX. MatricesX ' and X9 that appeared at the
right hand sides of Egs. (54) in the course of linearization are defined as

X = B (U°(r) — U°(rj) + (n — o) §; (UO(rj) — UO(r)) — 2E;,
9 r|2U°(r|)B|j — D|jUO(I'j)—2I'|2E|j, n=1,
T B U — UO(r)) + N+ ow)§; (UO() —U%(r))) — 26,  n> 1.

Notice thatX fU, X9U = 0 because operatoBandB are exact only on the polynomials
of degree not higher thanQ®

The resolve Egs. (54) (that is, to express the unknown quantities relating tp,; and
iteration loops through the ones dt= tx and preceding iteration) we exploit the numer
ical method of Sections V, VII. Limiting ourselves ¢, # 0 and dropping intermediate
calculations we obtain then

Rt — Tk T, %M s> 1, x = (Fy, F2,....Fo,.G1, Gy, ...,Gq,)". (55)

where compleXQ+ + Qg) x (Qf + Qg) matricesT;, T, are functions ofrm, n, Re Q,
andAt. By evaluating initial approximations as

(0)k+1 — oxk _ yk-1
we obtain from recurrence relations (55)
(S>k+1 — Toxk TS k1 (56)
where
=217+ (T, Y4+ Ty %+ + T+ E)Tw.

MatricesT; and T, do not depend on inddx Therefore we seek solutions of Eqgs. (56
in the form

[©) (S
X k+1 _ k+1

p X,

) . .
where o andx are among the eigensolutions of the spectral problem
(S) T3 —-T° )
py=Ty=(_2 "2 )y. y=0xx" (57)
E 0
Desired eigenvaluésj = ;\.j (am, N, Re Q, At, S) are evaluated then by the formulas

=P,  j=12..Qf+Qq (58)

Comparison of the fully discrete eigenvalu{és,} with {X,-} and{i;}, rex; > rexjq
allows one to make certain conclusions concerning stability and accuracy characteristi
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TABLE 5
Eigensolutions of the Discrete and Differential Spectral ProblemsRke = 4000,S = 2

amn At Ai(am, N, Re Q, At, S) A1(@ms N, R& Q), Ay (e, N, R
Q=30 Q=40 Q=50

1,1 0.8 —0.0405—-3.93 —0.0129—-3.93 —0.00527—-3.93 = —0.0358-0.923 (Q=230)
0.4 —0.0462—-0.916 —0.0462—-0.916 —0.0211 —7.85 X, = —0.0358—0.923
0.2 —0.0370-0.921i —0.0370-0.921i —0.0370 —0.921i
0.1 —0.0359-0.923 —0.0359-0.923 —0.0359 —0.923
0.05 —0.0358—-0.923 —0.0358—-0.923 —0.0358 —0.923

10,10 0.2 +4.14 124 +4.14 —-122i +4.14 —12.2i X1:—0.512—7.7(]' (Q=30)
0.1 —0.474 —5.11i —0573 -0.928 -0.337 +314i Xl = —0.574-0.928 (Q=40)
0.05 —0.317 —6.68i —0.574 —-0.928 -0574 -0.928 X, = —-0.574-0.928
103 —0.262 —7.21i —0574 —0.928 -0574 -—-0.928
104 —0.262 —7.21i —-0574 -0.928 -0574 -0.928

20,20 0.1 +7.59 —245i +7.47 —24.4 +7.46 —24.4i L = —-0.839-126i (Q=30)
0.05 —0.651 —8.24i —1.04 -—-148 —-1.04 —1.48 Xl =-1.04-1.48 (Q=40)
0.025 —-0.477 —-114 —0.919 —-125i —-1.04 —1.48 A, =-104-148
0.0125 —0.429 —115i —0.849 —133i —1.04 —1.48
103 —0.421 —125i —0.840 —134i —-1.04 —1.48
104 —0.421 —-125i —0.840 —134i —-1.04 148

42,42 0.05 +147 —496i +144 —495 4142  —495 1, = —1.92-182i (Q=30)
0.025 —-159 —-133i —219 -16.6i —2.27 —2.42 X1:—2.27—2.42i (Q=40)
103 —1.42 177 —-1.88 217 —2.27 —242 A =-227-242
104 —142 177 —-188 217 —2.27 —2.42

the numerical method as well as to make the preliminary selection of its parameters.
example, in Table 5 we compare the least stable discrete eigenialeesiuated by means
of algorithm (54)—(58) with the corresponding eigenvalues of the differential problem.

It should be stressed in addition, that the procedure of matrgvaluation is just the
same as suggested in Sections V and VII. Therefore, computations by means of forn
(54)—(58) may indicate the effect of computer roundoff errors.

Such information cannot be obtained by means of a popular method based on the
bility region concept [23]. The latter technique can be exploited only when the same t
integration scheme is used both for viscous and convective terms. For example, witt
implicit Crank—Nicolson method Egs. (55) take the form

KL )y /At = TR 43K /2, (59a)
and with certain predictor-corrector method
(Rt sy at =T 4 xk) f2(s=1.2,....9, XL =2k —xL (59p)

whereT is the matrix from Eq. (48). In both cases each eigenvalfe¢he conversion matrix
from time step to time stefy 1 is defined by the product aft times the corresponding
eigenvaluer(om, n, Re Q) of matrix T,

<o+ i) )

(60a)
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for (59a) and

2 (9

— 1-(0.50ADS
- p<1+ aart— (O=AA07

(Ig)
1-0.5xAt

+ (0.5XAt)S) + (0.5LAH)S =0,  (60b)

for (59b). And what is more, formulas (59), (60) differ from the actual solution procedt
for the discrete Navier—Stokes equations. Therefore, the concept of stability regions o
complex plane_LAt cannot be used to examine the effect of roundoff errors on the accur
and sometimes even on the stability limit of computations.

C. Direct Navier—Stokes Simulation of Laminar-Turbulent Transition atR&00

Initial disturbances of laminar pipe Poiseuille flow were specified using superposit
of axisymmetric and nonaxisymmetric eigenfunctions of the Navier—Stokes equations
earized about the parabolic velocity profile. Concretely, we used three least stable vi
eigenfunctions corresponding to Fourier modes with wavenungbgrs) = (1, 0); (0, 1);

(1, 1) and energies

1 v2
Enm= ——— [ dr2" =1073
"M R2X /g 2

each. Time evolution of these finite-amplitude disturbances was calculated until the
tistically stationary turbulent flow regime was established. Computations were car
out with (Q + 1) x 2N + 1) x (2M + 1) = 33x 41 x 41 basis functions im, ¢, X at
Re=4000Re =uc D/v~5432Re =u,D/v ~ 289 and X =7 D(Xt = Xu, /v ~
907). Hereuc, andu, are the mean centreline and wall-shear velocities. Minimum a
maximum grid spacings inare 0.17 (the first mesh point away from the wall) and 7.09
wall units. The minimal resolved wavelengthsgrfatr = R, along the pipe surface) axd
arer, = 7 D/N ~ 4536v/u, andi, = X/M =~ 45.36v/u,.

The computed time history of laminar-turbulent transition is shown in Figs. 1, 2. T
primary stabilization of basic integral flow characteristics such as the space-averaged
sure gradient and kinetic energy of disturbances (Fig. 1(a)) as well as of the maad (
x-averaged) velocity profile (Fig. 2(a)) is rather a rapid process taking of about 100 r
dimensional time units (4000 time steps). It should be noted that time inteevgd0, 100]
often proves to be the bane of numerical simulation, due to very rapid reorganizatio
the flow field at the late stage of transition and the strongly nonlinear nature of this |
cess. We remind also that our computations were carried out under the condition of vol
flux constancy (see Fig. 1(b) and Eq. (3c)). Otherwise (e.g., if the space-averaged pre
gradient is assumed to be fixed), duration of the transient regime may be several t
longer. The total integration time was abdut 1500 (see Fig. 1(a)) with the averaging
time T ~ 500 ~ 18R/u, ~ 265%/u? (t € [1000, 1500], Fig. 1(a)) and computational
time stepAt = 0.025~ 9.03 x 10*R/u, ~ 0.13v/u?.

The mean velocity profiles as well as the computed Reynolds shear stress are com
with those of experimental and numerical data [28, 29, 3] in Figs. 2(b), 4(a). Here .
below the computed mean and r.m.s. valuessare and time-averages. The agreement i
quite satisfactory in spite of the fact that present spectral calculations are carried out
much less number of basis functions compared with the number of grid points explo
by the finite-difference scheme of [3]. Note also, that the congruence of the compt
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FIG. 1. (a) Time history of the laminar-turbulent transition in a circular pipe under the condition of flo
flux constancy;V p).,.« is the non-dimensionalized space-averaged pressure gradient (initial vag0of
corresponds to laminar pipe flow pressure gradiedAfRe), Egis is the total kinetic energy of disturbances.
(b) Skin-friction coefficientC; = — (Vp) 4.« D/ZpJZ versus Reynolds number. An arrow connects initial anc
final states of the transition process: poist torresponds to the disturbed laminar flow (initial condition of our
Navier—Stokes simulation), and poinrt“to the established turbulent flow regime. Intermediate stages of transiti
all correspond to arrow points betweeando. The computed turbulent value 6f ~ 1.04x 1072 (pointo) agrees
well with Blasius friction lawC; = 0.079Re ¥* ~ 9.93 x 10~ (about 5% difference) &e= 4000.
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T
_ . 06 / e /& Shemer, Wignanski and Kit (1985), Re = 4000
u/ uCL f = , ” 4 Patel and Head (1969), Re = 4430
04l Y. x Patel and Head (1969), Re = 2975
! / — — Parabolic profile
7 - -----BEggels et al. (1994), Re = 5300
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y

FIG.2. (a)Mean velocity profiles in the course of laminar-turbulent transition in a circular ppe=2at4000.
(b) Mean velocity profiles normalized by the centreline velo¢ity= 1 —r/R).

total shear stress with the straight line indicates both that the statistical sample is ade
and that the computed results correspond to the equilibrium state. Analogous conclu:
can be made by examining Fig. 3 where the r.m.s. velocity fluctuations are presented
distributions of root-mean-square vorticity fluctuations are shown in Fig. 4(b). In Fig. 5
compare them in the near-wall region with those of high resolution channel flow simt
tions [30].

As far as we know this is the first direct simulation of all stages of laminar-turbulent tr:
sition in a circular pipe. Previous investigations dealt with either established turbulent |
flows [2, 3, 8] or initial stages of transition [6]. Thus, the algorithm presented seems t
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25l © Shemer, Wignanski and Kit (1985), Re = 4000

_____ Eggels et al. (1994), Re = 5300
_ Present, Re = 4000
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FIG. 3. Root-mean-square velocity fluctuations as functions of distgneel — r /R from the pipe wall:
(a) streamwise and radial; (b) azimuthal velocity components.
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(a) Reynolds and total shear stress distributions. (b) Root-mean-square vorticity fluctuations in g

FIG. 4.

coordinates.

a ready-to-use robust tool for accurate numerical simulation and future well-resolved
metric studies of both transition mechanisms and fully developed turbulent flow regin

IX. DISCUSSION

Up to this point, when searching for the numerical Navier—Stokes solutions in the ft
(10), we did not presuppose the existence of any symmetry restrictions. Meanwhile, sir
hypotheses are often made in the course of boundary layer and channel flow simula
when the flow field is assumed to be symmetric with respect to the plan®, z being the
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FIG. 5.

spanwise coordinate (see, e.g., [31-33]). In Cartesian coordinates the spanwise-symi
Navier—Stokes solutions seem to be adequate: comparison of the computed turbulen
characteristics with those obtained in the laboratory gives satisfactory results. Neverthe
until now no serious theoretical arguments are shown on behalf of the possibility to desc
transitional and turbulent flow regimes by means of spanwise-symmetric (at every mor
of time!) Navier—Stokes solutions. Possibly, this is the reason why in the most thoro
and accurate calculations (see, e.g., [30]) numerical solutions are not asauyiried to

10 20 30 40 50 60 70 80

Root-mean-square vorticity fluctuations in the near wall region.

have certain symmetries.
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In cylindrical coordinates the “spanwise” symmetry of the velocity field means that

v(r, @, X, t) = v(, —p, X, 1),
w, @, X, 1) = —w(, —¢, X, 1), (61)
u(rs (p9 Xs t) = u(r3 _(pv Xv t)5

and these relations are formally preserved by the Navier—Stokes equations (2a), (2b
boundary conditions (2c), (3). From the computational point of view it is rather tempting
assume that turbulent flow may have such a symmetry. Indeed, in this case one can e
the sparse set of Fourier modes instead of general representation (10). As it follows
Egs. (29) and (61)

v x, ) =0,  wSr,x,)=0, udr, x,t)=0, (62)

so that the computational complexity of simulation may be considerably reduced. See,
[34] where symmetry restrictions (61) are exploited for the turbulent pipe flow simulati

However, in contrast to Cartesian coordinates we can produce certain reasons justi
the inability of the Navier—Stokes solutions (61) to describe actual turbulent flgiv lim
fact, if Egs. (62) are correct, we obtain instead of (38)

N
(1. @. X, 1) =T (@7 sing + 12 "1 (w,)5 sinng, (63)
n=2
where functiongwy)S are defined by Egs. (39) as before. We remind that formulas (6
follow directly from Theorem 1 that governs the asymptotic behaviour of analytic functic
atr — 0. Note that as it follows from Eqgs. (63), the instantaneous values as well as
root-mean-square fluctuations of the streamwise vorticity become zero at the polar ax

The latter property contradicts certain known computational results for the turbulent f
vorticity values far away from channel or pipe walls. Indeed, in channel flow calculations |
Fig. 14(a)] all three components of the fluctuating vorticity have almost equal nonzero
ues at the channel centerline. An analogous result is obtained in the present paper (Fig.
for general Navier—Stokes solutions having no symmetry restrictions. In addition, su
behaviour of vorticity components looks very plausible from the physical point of vie
As to the existing experimental data on vorticity fluctuations, it seems to be limited to
near-wall region and therefore cannot be used to determine if the Navier—Stokes solu
(61) can describe any turbulent flow regimes.

To clarify the issue, i.e., to understand if the approximate Navier—Stokes solutions
really exist and what is their relationship with actual turbulent flow§,imwe have carried
out a special investigation. The latter involved both the description of laminar-turbul
transition and the evaluation of those turbulent flow characteristics that correspond to
established experimental data.

As a result we can conclude that the use of symmetry relations (61) in the cours
numerical simulation turns out to be rather insidious. First of all, the numerical Navi
Stokes solutions (61) do exist: pipe Poiseuille flow is unstable with respect to finite amplit
azimuthally symmetric disturbances and statistically steady (“turbulent”) solutions car
really computed. Second, certain basic turbulence characteristics are almostinsensitive
the skin-friction coefficient as well as the root-mean-square fluctuations of streamwise
radial velocity components shown in Fig. 7(a)) or weakly sensitive (the Reynolds st
stress, Fig. 8(a)) to the incorporating of symmetry relations into the numerical mo
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However, there exist such well-established flow characteristics that cannot be adequ
described by the azimuthally symmetric solutions. Among them are the mean velocity pr
and r.m.s. fluctuations of the azimuthal component of velocity (Figs. 6, 7(b)). But the ir
striking disagreement between azimuthally symmetric and general form solutions repre:
the streamwise component of vorticity (compare Figs. 4(b) and 8(b)). Thus, in contrast t¢
plane channel and boundary layer flows, the “spanwise” (azimuthally) symmetric Navi
Stokes solutions fail to describe some of the basic turbulent flow characteristicdtin
should be noted in conclusion, that we did not examine here the stability of solutions
with respect to disturbances of a general form.

One more symmetry group allowed by the Navier—Stokes equations and boundary
ditions (2), (3) is defined by the solutions (10) with

Vo241 9, X, ) =0, Vagra(r, ¢, X, 1) =0,

k=0,1,..., I=01,....
Nonstationary Navier—Stokes solutions with symmetry restrictions (64) were compt
(among others) using one of the previous versions of our numerical method (alg@kjthn
[7]). These long-life (i.e., undamped at least for abalit ~ O(Re) solutions describe
statistically steady flow regimes ig with the same skin-friction coefficient, aver-
aged pressure gradient, and kinetic energy of velocity fluctuations as in the case of
eral Navier—Stokes solutions without any symmetry restrictions. The detailed compar
of turbulence statistics computed by means of symmetric and general solutions wa:
conducted.

Notice also the following computational peculiarity of the symmetry conditior
(64). If we take the velocity field satisfying Egs. (64) as an initial condition for tf
Navier—Stokes integration in time, we may reproduce these symmetry relations for arbit
time even when we use an universal computer code. We may even not suspect that or

(64)

08} &G -

/ ¢ Shemer, Wignanski and Kit (1985), Re = 4000
04} /" + Patel and Head (1969), Re = 4430

/" X Patel and Head (1969), Re = 2975
y / — — Parabolic profile
02f y Present, Re = 4000 (33 x 41 x 41), General form
;T Present, Re = 4000 (33 x 41 x 41), Azimuthally symmetric
0 0.2 0.4 0.6 0.8 1

y

FIG. 6. Mean velocity profiles corresponding to Navier—Stokes solutions of general and azimuthally s
metric forms.
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35

a < Shemer, Wignanski and Kit (1985), Re = 4000
Present, Re = 4000 (33 x 41 x 41), General form
-- -~ Present, Re = 4000 (33 x 41 x 41), Azimuthally symmetric

0 0.2 0.4 y 0.6 038 1

FIG. 7. Comparison of the r.m.s. velocity distributions corresponding to Navier—Stokes solutions of gen
and azimuthally symmetric forms.

of our Fourier modes remains equal to zero in the course of calculation. For exampl
our initial condition is the superposition of the base parabolic flow and any eigensolu
corresponding to wavenumbe@s, n) = (1, 1) we'll be able to compute only solutions
belonging to the class of functions (64). Roundoff errors may not play the usual dest
lizing role here because the result of the multiplication of a nonzero value by the mac
zero is often interpreted as the zero constant by the computer. That is just the case wh
compute the quadratic nonlinear terms of the Navier—Stokes equations.

Of course, the foregoing investigation of some symmetry relations and their suite
ity for the Navier—Stokes turbulent flow simulation is incomplete. Additional exampl
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1 a Reynolds shear stress:
© Shemer, Wignanski and Kit (1985), Re = 4000
'V [ul, Present, Re = 4000 , General form
0.8 i

\— - - =WV [ul, Present, Re = 4000 , Azimuthally symmetric

Total shear stress:
-------- Fully developed pipe flow

0.6

04+

0.2

0.4
Present, Re == 4000 , Azimuthally symmetric:

\ oo @ omat

- === (@)}

(2 )rmav [u?

0.3

0 0.2 0.4 y 0.6 0.8 i

FIG. 8. Comparison of the Reynolds shear stress distributions (a) and r.m.s. vorticity fluctuations (b) cc
sponding to Navier—Stokes solutions of general and azimuthally symmetric forms.

of symmetries allowed by the incompressible Navier—Stokes equations can be four
[35, 36] concerned with Taylor—Couette and spherical Couette flows. In the pre:
investigation we intended to show possible difficulties as well as the existence of cel
solutions in principle. Is there any relation between symmetry and some special phy:s
Are symmetric solutions stable with respect to disturbances of general form? Are tt
any simplifications of the space-time structure of velocity and pressure fields describe
the symmetric solutions compared with those of general form? Are symmetric soluti
approaching those of general form in the limit when the Reynolds number is very lar
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These problems require additional thorough investigation. We hope that our accurate
fast numerical method can be exploited for that purpose.

X. SUMMARY AND CONCLUSIONS

We have presented a fast, accurate, and robust pseudospectral Navier—Stokes alg
suitable for numerical investigation of laminar, transitional, and turbulent incompress
fluid flow regimes in a circular pipe. Moreover, a new algorithm (or its fragments) may h:
wider applicability including the situations when computational domain contains coordir
singularity along the polar axis= 0 and when the dependence on azimuth apgtan be
represented as a Fourier series due to physical symmetry of the problem.

The algorithm is based on a new change of dependent variables that avoids singu
problems taking into account special behaviour of analytic functions in the vicinity o
singularity point (Theorem 1). Being written in new variables Navier—Stokes equations
be discretized then without loss of accuracy by using the Galerkin trigonometric app
imation in azimuthal and streamwise directions and the Chebyshev collocation techn
in r. The use of half Chebyshev grid points with prescribed conditions=ad turned out
to be justified: spectral (faster than algebraic) convergence of numerical Navier—St
solutions in the pipe was achieved. The possible reason for spectral convergence is th
Navier—Stokes solutions obtained proved to be analytic functions in the vicinity of pc
axis. In this case their Fourier coefficients may be smoothly extended to the functions ol
interval [- R, R]. Thus, depending on the azimuth wavenumber the even or odd Chebys
polynomials become appropriate expansion functions ensuring spectral accuracy.

For integration in time we exploit the Crank—Nicolson method with viscous terms,
backward Euler with the pressure, and the second order predictor-corrector scheme wi
nonlinearity. For the solution of resulting discrete Navier—Stokes equations we sugge
efficient and weakly roundoff-sensitive method (Theorem 2). This method is based or
influence matrix technique but has certain modifications (due to the cylindrical geom
and coordinate singularities at= 0).

Another key point of our algorithm is a fast technique for the evaluation of Navie
Stokes nonlinear terms. Direct implementation of the usual pseudospectral method pi
to be impossible due to a rather complicated form of nonlinearity written in terms of n
variables.

A new algorithm was thoroughly tested: eigensolutions of the pipe Poiseuille flow lin
stability problem as well as the total time history of laminar-turbulent transition includi
the established turbulent flow regime were computed at the supercritical Reynolds nu
of 4000. In spite of the presence of coordinate singularities the algorithm provides spe
accuracy and is weakly sensitive to the roundoff errors. We stress that the new algor
allows us to compute all the stages of laminar-turbulent transitignhimthe framework
of one mathematical model without tuning its parameters in the course of computati
The latter seems to be very important for future high resolution parametric studie:
transition mechanisms and comparisons with corresponding experimental data. Notice
that our calculations are completely reproducible: in addition to necessary formulas
show the structure and amplitudes of initial disturbances of parabolic base flow (beinc
eigenvectors of linear stability problem) that finally lead to laminar-turbulent transition.

In conclusion we want to draw attention to the results concerning the existence
usefulness of numerical Navier—Stokes solutions having certain symmetries. In partic
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we managed to show that, in contrast to turbulent channel and flat plate boundary |
flows, the pipe flow turbulence cannot be adequately described by the so-called span
symmetric Navier—Stokes solutions. It should be noted that spanwise symmetry of solu
does not represent some kind of exotic symmetry group: the time averaged Navier-Si
solutions of general form seem to have such symmetry.

APPENDIX A: MATRIX ELEMENTS OF EQS. (19)

For arbitraryl, j = 0,1, ..., Q,

Tom(r /R
Cj = GQ’ZQquq(r,/RmZ(q my(q +m 22 /R)
Q = - Cm
8 Tom(ri /R
B|J = bt ZQQTZq(rJ/R)qZ[l_( 19~ m] an(®/ )
m=0 Cm
Q Q
D = EZ 2q(fJ/R)CIZP(q)T2m(f|/R),
m=0
80 g-1 . m T2m(r1/R)
Sj = 32 Toq(rj/R(=DTD (@ —m)(-1) e

m=0

where
=2 Ctp=1(m=>1,
00=0q=05  04=1(q#0,0Q),

Qg zlm
Toq(rj/R) = cos? Tom(r/R) = cos——,

Q
p? =p® =05 pP=1m=12....q9-1.

APPENDIX B: ADDITIONAL FORMULAS FOR ZERO WAVENUMBERS

1.Equationg(21)foraym > 0,n =0

Instead of (21) we have

2
(EE—UL">V||+BP||=t§8|0+a|”, | =0,1,...,Q,
(214a)
Vo=0
2 E L'll) W| w I l 2 Q
—E -V = =
At | a-| ’ y & ) )
(21b)
Wo=0
2 U|.+ip.=r“5|0+a,” 1=0,1,...,Q
At 8X 0 ) PR B )
(21¢c)

Up=0



NAVIER-STOKES INVESTIGATION OF TURBULENT FLOWS 409

d
(D +2E)V | —I—&U| =0, l=0,1,...,0Q. (22d)

>, >, def
HereP &' (P, P1. ..., PO, Pj(x) =2 pgjnll p%;1|r 3V E (Vo, Vi, ..., VQ)T,
®)
Vi(x) = v(k;nl,, analogously folW andU. MatricesL*" are defined by

L'=L"=C+3B—-aiE, L'=C+B-da?E. (23)

2.Equations(21)fora, =0,n > 0

Formally, Egs. (21), (22) may be used in this case. However, we can improve the stal
characteristics of the scheme rewriting (21), (22) as

2
<§E - va)Fh +RPl =19 810 + 13 (1 — 8n)dig + &

(217a)
1=0,1.....Q. Fo=0, Fo=0(n>1
2
<A_tE — ng>GI| + RP), = t05|o+ tQ(l— dn1 — dn2 — n3)dio +611
(21'b)
1=0,1,....Q, Gg=0, Go=0(n=>3)
2 u u u
EE —vL™ JUJ| = 703I0+TQ(1_5n1)5IQ + a7,
(227¢c)
|=O,l,...,Q, U0=0, UQ=O(n>1)
0,1,...,0Q n=1
f g = = ’r ’ ’
HIFl +HG =0, | {0,1,...,Q—1, n>1,
(21'd)

Po=0 (n>1).
© ©
Here (in contrast to Egs. (21), (2253 & Py, Pl, PO P = Pt =P

©
FE(Fo, Fr,....F)T. Fj(p) = ',‘]3]1/2_( f ,'fafjl + fnoj)/z, analogously foG andU;
right hand sides,"%" are defined by

(s=1)

. 2 q kL4 gk
a' = = fro+do | ———— | (22)
with similar formulas fora?, a!.

3. Equations(21)foram =n=20

pOKl=0, 1=0,1,...,Q, (217a)
(s=1)
2 " 2 q 4 gk
(A_tE_VL >W||:A—twléo| +ng| f N

(21///b)

l=1,2,...,Q, Wy=0
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(Sal) kHl 4 gk

2 2
(EE — vL“)Uh + p (tky1) = —tuom +doa | — 2 )
(21///0)

Q R
1=1,2...,Q,  Uy=0, Zyjujz/ U dr.
j=0 0

def

©®
HereU € (Up, Uz....,Ug)",Uj =l g5/ = (@ k&1 + Tio;)/2 and analogously fow.
Coefficientsy; and matriced ", L* are defined by

Q 1 1 1 T
20; R? il —71) =2
P = To(ri /R, K =
Vi 0 ng 2 /R | 0 | — 241
LY =C + B, LY =C + 3B.
4. Relationg24)forn =0
v a u u a
(D + 2E)L v+&|_ U=1L (D+2E)V+&U , (24a)
((D +2E)B — o4E)P = L"P, (24b)

where matrices?, LY are defined by Eqs. (23of the previous subsection.
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