
                     

JOURNAL OF COMPUTATIONAL PHYSICS142,370–411 (1998)
ARTICLE NO. CP985931

Accurate Navier–Stokes Investigation
of Transitional and Turbulent

Flows in a Circular Pipe

V. G. Priymak∗ and T. Miyazaki†
∗Institute for Mathematical Modeling, Russian Academy of Sciences, Miusskaya Square 4-A, Moscow,

125047, Russia;†Department of Mechanical Engineering, Kokushikan University,
4-28-1, Setagaya, Setagaya-ku, Tokyo, 154, Japan

Received January 9, 1997; revised January 27, 1998

A new, fast, accurate, and roundoff-error robust numerical technique for inte-
grating unsteady incompressible Navier–Stokes equations in cylindrical coordinates
is presented. The algorithm is based on a special change of dependent variables
which avoids the singularity problem and provides high accuracy and computational
efficiency. Accuracy and stability of the method are thoroughly tested for the model
problem of transitional and turbulent flows in an infinite circular pipe. Verification
of the algorithm includes two issues. First, spectral characteristics of the Hagen–
Poiseuille flow stability problem are compared with those of the discrete linearized
Navier–Stokes operator. Secondly, the results of direct Navier–Stokes simulation of
all stages of laminar-turbulent transition in a circular pipe at Reynolds number of 4000
are presented. Time evolution of finite-amplitude disturbances of laminar flow was
calculated until the statistically stationary turbulent flow regime was established.
In addition to common statistical analysis, the possibility of turbulence descrip-
tion by means of velocity fields having certain symmetries is examined. Thus, the
algorithm presented seems to be a ready-to-use robust tool for accurate investigation
and further parametric studies of both transition mechanisms and fully developed
turbulent flow regimes. c© 1998 Academic Press

I. INTRODUCTION

In this paper we concern ourselves with the classical problem of Poiseuille flow stability
in an infinite circular pipeG= {r = (r, ϕ, x) : 0≤ r ≤ R, 0≤ ϕ < 2π, |x| < ∞}. More than
a century ago O. Reynolds [1] suggested that the instability of stationary pipe flows may be
the reason for transition to turbulence and since then numerous attempts were undertaken to
verify this hypothesis. Continuing interest in the problem is based on the desire to gain an
insight into laminar-turbulent transition phenomena and its control. The pipe Poiseuille flow
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stability problem is of special interest here because it is one of the simplest mathematical
idealizations of O. Reynolds experiments.

The main objective of our work is to develop a fast, accurate, and robust Navier–Stokes
algorithm suitable forfurther parametric studiesof pipe Poiseuille flow stability and
related problems. The algorithm constructed covers: (a) direct numerical integration of
three-dimensional nonstationary incompressible Navier–Stokes equations in cylindrical ge-
ometry with coordinate singularities at supercritical Reynolds numbers; (b) discretization
and efficient solution of the eigenvalue problem for the linearized Navier–Stokes operator.
Both issues are based on a new change of dependent variables for Navier–Stokes equations
in cylindrical coordinates.

The set of key formulas as well as the results of numerical verification at physically
meaningful parameters of the problem is presented in the following sections. Algorithm
testing includes the investigation of temporal stability of pipe Poiseuille flow both in linear
(i.e., with respect to infinitesimal disturbances) and in general nonlinear cases. In particular,
we present results of direct Navier–Stokes simulation of laminar-turbulent transition in a
circular pipe at a supercritical Reynolds number of 4000. Initial disturbances of laminar
flow were specified using nonaxisymmetric eigenfunctions of the Navier–Stokes equations
linearized about the parabolic velocity profile. Time evolution of finite-amplitude distur-
bances was calculated until the statistically stationary turbulent flow regime was established.
Thus, the algorithm presented seems to be a ready-to-use tool for accurate investigation of
both transition mechanisms and fully developed turbulent flow regimes.

Another new result of this paper is that we have shown analytically and numerically that
in contrast to the plane channel and flat plate boundary layer flows the pipe flow turbulence
cannot be described by means of Navier–Stokes solutions having certain symmetries (e.g.,
incorporating theϕ-expansion restrictions).

As far as we know this is the first direct simulation of all stages of laminar-turbulent
transition in a circular pipe. In some previous Navier–Stokes simulations of pipe turbulence
(see, e.g., Priymak [2], Eggelset al. [3]) initial conditions were to some extent close to
experimental data thus beinga priori close to the desired result. In computations of Nikitin
[4] initial flow field was produced by a random number generator that essentially limits
the possibility of physical interpretation and reproduction of the results. Initial stages of
laminar-turbulent transition in a pipe were thoroughly examined by O’Sullivan and Breuer
[5, 6]. Difficulties associated with the simulation of the late stages are well known to us
also. Our former numerical techniques [7, 8] are well suited for the computation of fully
developed (statistically steady) turbulent flows as well as of the initial stages of laminar-
turbulent transition but demand the repeating filtering of high-frequency modes at the late
stages. Notice in addition that Eggelset al. [3] and Nikitin [4] utilized finite difference
methods to discretize Navier–Stokes equations. The complexity of their finite difference
computations seems to be somewhat lower compared to that of our spectral method. On
the other hand accuracy of the spectral approach is higher: the details of, e.g., the space-
time structure of the turbulent boundary layer may not be accurately described by finite
difference methods which suffer from noticeable dispersion and diffusion errors.

Direct Navier–Stokes simulation of all stages of laminar-turbulent transition carried out in
the present work seems to be interesting in several aspects. From the hydrodynamic point of
view this is one in a few direct theoretical indications of the instability of the fully developed
stationary pipe flow with respect to finite amplitude disturbances. In the computational
aspect the possibility of calculating the total temporal evolution of initial disturbances by
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means of a unique algorithm without its tuning at different stages of transition is extremely
attractive, above all, because such a strategy leaves fixed the conditions of the numerical
experiment similar to those that take place in the laboratory. The latter facilitates the moni-
toring of accuracy and reliability of the results obtained. Fixed conditions of simulation are
important also for parameter studies of Poiseuille flow stability including investigation of
the disturbance structure and amplitude influence on the transition scenario. In addition,
the possibility of using a robust algorithm for the simulation of all stages of temporal
transition allows one to rely on suitability to use its modifications for more complicated
(and more realistic) spatial transition calculations with nonperiodic inflow-outflow boundary
conditions.

Until now, most of the analytic and numerical works dealt with the linear stability of
pipe Poiseuille flow. Careful investigations demonstrate the stability of a parabolic velocity
profile with respect to axisymmetric as well as nonaxisymmetric disturbances at all Reynolds
numbers [9]. In the axisymmetric case there also exists the rigorous proof of linear stability
[10]. Mathematically, investigation of the stability in the linear approach reduces to the
linearization of the Navier–Stokes operator about the parabolic velocity profile, consequent
diagonalization, and analysis of eigenvalues. In the present work we are not concerned
with numerical methods based on the determination of a few leading eigenvalues defining
an asymptotic stability of the stationary solution. On the contrary, we are interested in
algorithms able to calculate the full set of eigenvalues of the Navier–Stokes operator for the
following reasons.

First, according to modern concepts the local growth of asymptotically stable disturbances
can play an important role in triggering transition. At least two mechanisms of such a
behaviour are proposed: an algebraic growth of eigenfunctions closely associated with the
near degeneracy of eigenvalues [11] and the so-called transient growth stipulated by the
nonorthogonality of eigenfunctions of the linear stability operator [12]. In both cases it is
suggested to compose an initial disturbance as a superposition of several specially selected
eigenfunctions corresponding to eigenvalues from different parts of the spectrum. These
eigenfunctions and eigenvalues have to be computed with high accuracy. The question of
whether the mechanism indicated can really launch the nonlinear interactions and finally
result in the transition to turbulence remains undecided (see, e.g., [5, 6]) and needs further
verification.

Second, the knowledge of the complete set of numerical eigenvalues{λ̄k}K
k=1, reλ̄k ≥

reλ̄k+1 whereK depends on the resolution is necessary for the discretization quality control.
Among the leading values̄λk, k ' 1, 2, . . . , K/3 there must be no “spurious” (see also [13])
or other parasitic eigenvalues bearing any relation to the pipe flow spectrum. Eigenvalues
λ̄k, k ≥ 2K/3 (the upper third of a numerical spectrum) always correspond to the numerical
rubbish and strongly depend on the discretization technique. Nevertheless, the upper edge
of the spectrum essentially affects the stability of explicit as well as the convergence and
accuracy of implicit time advancing schemes. Thus, the calculation and analysis of the full
set of numerical eigenvalues serves as a convenient tool for ana priori monitoring of the
Navier–Stokes spatial and temporal discretizations.

Numerical solution of the linear stability problem implies the Navier–Stokes spatial dis-
cretization followed by the reducing of discrete equations to a standard eigenvalue problem
λx = Ax. Eigenvaluesλ may then be calculated by means of the QR-algorithm. Certain
difficulties arise when accurately approximating Navier–Stokes equations near the coordi-
nate singularity (r = 0). Poor discretization may easily lead to low accuracy and sensitivity
of the results to the roundoff errors. From cylindrical symmetry of the problem it follows
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that the sought for solution may be written as

v(r , t) =
∞∑

n=−∞
vF

n (r, x, t)einϕ, vF∗
n = vF

−n, i 2 = −1,

with an integration domainG ′ = {0 ≤ r ≤ R, |x| < ∞} for the Navier–Stokes equations
written in terms of Fourier coefficientsvF

n . Since there is no physical boundary atr = 0,
certain numerical conditions should be imposed at the polar axis that is now a part of
domainG ′ boundary. Analytic vector and scalar functions have special behaviour [14] near
the singularities that can be exploited when formulating the numerical boundary conditions.
Spectral and pseudospectral algorithms developed in [5, 7, 12, 15–19] take into account
the stated behaviour of analytic functions thus preserving high accuracy. However, the
issue of computational efficiency of the discrete Navier–Stokes solver is developed far
less satisfactorily, especially concerning the possibility to exploit fast transforms for the
evaluations of nonlinear terms (we can refer here only to Bouaoudia and Marcus [20]).

In the present paper we do not require the Navier–Stokes solutions to meet exactly
the behaviour of analytic functions atr → 0. We require the weaker condition that the
Navier–Stokes equations and their divergence be nonsingular at the origin. Such Navier–
Stokes solutions satisfy the parity relations (i.e., even-odd properties ofvF

n as functions ofr
depending on the parity ofn) just the same as analytic functions do. If the sought for infinitely
differentiable Navier–Stokes solutions prove to be analytic their Fourier coefficientsvF

n

may be extended to the functions on the interval [−R, R]. In this case the Chebyshev
interpolation polynomials ( just even or just odd ones depending on the parity ofn) may be
used for the approximation of velocity and pressure with spectral accuracy. Note that the
above arguments on the point of spectral convergence are not rigorous: we don’t know if
the turbulent Navier–Stokes solutions are analytic functions or not. Nevertheless, in Section
VIII we demonstrate multiple numerical indications of spectral convergence when using
the half Chebyshev grid on radial nodes.

In the context of a linear stability problem it is of special interest to devise an algorithm
which reduces the discrete equations to the standard eigenvalue problem, is economical, and
is somewhat insensitive to roundoff errors. As for the Navier–Stokes time integration we
need an economical and fast solver for the nonlinear algebraic system of equations defining
the velocity components on a new time level. A new algorithm is based on a special change
of dependent variables which avoids the singularity problem and provides high accuracy and
computational efficiency. In contrast with our previous approaches [7] we require not only
the condition that Navier–Stokes equations (in new variables) should be nonsingular but
that their divergence should be nonsingular as well. Spatial discretization is trigonometric
approximation inϕ andx and Chebyshev collocation inr . The time advancement scheme
is Crank–Nicolson for the viscous term, backward Euler for the pressure, and a second-
order predictor-corrector type scheme for nonlinear terms. The incompressibility constraint
is enforced at the new time level. The Poisson equation for the pressure is obtained from
discretized Navier–Stokes equations by means of equivalent matrix operations. The final set
of discrete equations can be solved then by means of the influence matrix method with tau
correction [21]. As a result, we obtain a numerical method with computational complexity
close to that of typical Navier–Stokes algorithms in Cartesian coordinates.

The results presented are really reproducible: the necessary information (including am-
plitudes and the structure of initial disturbances, parameters of physical and mathematical
models, etc.) is given in the following sections.
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II. MATHEMATICAL FORMULATION

The stability problem for Poiseuille flow

V0 = U0(r )ex = − R2

4νρ

d P0

dx
(1 − r 2/R2)ex,

d P0

dx
= const, ex = (0, 0, 1), (1)

in G may be set up as the initial boundary-value problem for the Navier–Stokes equations
∂v
∂t

= −∇5 + ν1v + D(v), (2a)

∇ · v = 0, (2b)

v|r =R = 0, v|t=0 = V0 + v0(r), ∇ · v0 = 0, (2c)

wherev = ver + weϕ + uex = (v, w, u)T is the velocity;D = (Dv, Dw, Du)T = v × ωω;
ωω = (ωr , ωϕ, ωx)

T = ∇ × v is the vorticity;5 is the total pressure;ρ andν are the constant
density and kinematic viscosity; andv0 6≡ 0 is a certain initial disturbance of Poiseuille
flow.

Since the flow is homogeneous in thex-direction, Eqs. (2) are supplemented with the
boundary conditions

v(r , t) = v(r, ϕ, x + X, t), (3a)

5 = px(t)x + p(r , t), p(r , t) = p(r, ϕ, x + X, t), (3b)

Ū (t)
def= 1

π R2

∫ R

0
r dr

∫ 2π

0
dϕu(r , t) = 2

R2

∫ R

0
U0r dr. (3c)

Here the streamwise periodX is the parameter of the mathematical model,px(t) has the
meaning of a space averaged pressure gradient, and Eq. (3c) is the condition of volume flux
(mean velocityŪ ) constancy.

III. BEHAVIOUR OF ANALYTIC FUNCTIONS NEAR THE SINGULARITY

For the formulation of numerical boundary conditions at the polar axis we shall exploit
the well known (see, e.g., [14, 16, 17]) asymptotic behaviour of analytic functions atr → 0.
To make the article self-contained we include the following theorem.

THEOREM 1. Suppose that vectorv(x, y) = vxex + vyey, ex = (1, 0), ey = (0, 1), and
scalar p(x, y) functions of Cartesian coordinates are analytic for(x2 + y2)1/2 < ε (some
ε > 0). Then, as functions of polar coordinates, v(r, ϕ)= ver + weϕ, f (r, ϕ)= v + i w,
g(r, ϕ)= v − i w, and p(r, ϕ) satisfy the relations(0 ≤ r < ε)

q(r, ϕ) =
∞∑

n=−∞
qn(r ) exp(inϕ), q = ( f, g, p)T , (4)

fn = r |n+1| f̂n(r ), gn = r |n−1|ĝn(r ), pn = r |n| p̂n(r ), (5)

where

q̂n(r ) =
∞∑

k=0

q̂nkr
2k, q̂ = ( f̂ , ĝ, p̂)T .
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Notice that these statements can be derived solely from the analysis of Taylor expansions
of analytic vector and scalar functions in the vicinity of the polar axis.

COROLLARY 1. Suppose that the hypotheses of Theorem 1 are satisfied. Then radial
v(r, ϕ) and azimuthw(r, ϕ) components of the vectorv must satisfy

q(r, ϕ) =
∞∑

n=−∞
qn(r ) exp(inϕ), q = (v, w)T , (6)

q0 = r q̂0(r ), qn = r |n|−1q̂n(r ) (n 6= 0), q̂n =
∞∑

k=0

q̂nkr
2k. (7)

COROLLARY 2. Suppose that vectorv(r, ϕ, x) = ver +weϕ +uex and scalar p(r, ϕ, x)

functions of cylindrical coordinates are periodic in x with period X and are analytic for
0 ≤ r ≤ ε (someε > 0). Then for0 ≤ r ≤ ε functionsv, w, u, f = v+ i w, g = v− i w, p
satisfy

q(r, ϕ, x) =
∞∑

n=−∞

∞∑
m=−∞

qnm(r ) exp(i 2πmx/X + inϕ), q = ( f, g, p, v, w, u)T, (8)

fnm = r |n+1| f̂ nm(r ), gnm = r |n−1|ĝnm(r ),

(pnm, unm) = r |n|( p̂nm(r ), ûnm(r )),

(vnm, wnm) = r |n|−1(v̂nm(r ), ŵnm(r )), n 6= 0,

(v0m, w0m) = r (v̂0m(r ), ŵ0m(r )),

(9)

where

q̂nm =
∞∑

k=0

q̂nmkr
2k, q̂ = ( f̂ , ĝ, p̂, v̂, ŵ, û)T .

IV. NEW DEPENDENT VARIABLES

Approximate solutions of Eqs. (2), (3) we represent by the truncated Fourier series

v =
N∑

n=−N

M∑
m=−M

vF
nm(r, t) exp(i αmx + inϕ) =

N∑
n=0

M∑
m=0

vnm(r, ϕ, x, t), (10)

(
vF

nm

)∗ = vF
−n,−m, i 2 = −1, αm = 2πm/X,

with an analogous representation forp(r , t).
Next, we conduct two sequential changes of dependent variables. The first one

fnm(r, ϕ, x, t) = vnm + 1

n

∂wnm

∂ϕ
, gnm = vnm − 1

n

∂wnm

∂ϕ
, n > 0, (11)

is well known [14] and widely used to diagonalize vector Laplacian.
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The second is a new one

(ũnm, p̃nm) = r −σn(unm, pnm) (n ≥ 0),

(ṽ0m, w̃0m) = r −1(v0m, w0m),

f̃ nm = r −(σn+1) fnm (n > 0),

g̃1m = g1m, g̃nm = r −(σn+1)gnm (n > 1),

(12)

whereσ2k = 0 andσ2k+1 = 1 for k = 0, 1, . . . .
Going over to new variables in Eqs. (2) we obtain for certain Fourier mode withn,

m ≥ 0,

∂qnm

∂t
= −∇ p̃nm + ν1qnm + dnm(q), (13a)

∇ · qnm = 0, qnm =
{

( f̃ nm, g̃nm, ũnm)T , n > 0

(ṽ0m, w̃0m, ũ0m)T , n = 0,
(13b)

qnm|r =R = 0 (n ≥ 0),

∫ R

0
ũ00(r, t)r dr =

∫ R

0
U0r dr, (13c)

f̃ nm|r =0 = ũnm|r =0 = p̃nm|r =0 = 0 (n > 1), g̃nm|r =0 = 0 (n > 3). (13d)

Here forn = 0,

∇ p̃0m =
(

1

r

∂

∂r
p̃0m, 0,

∂

∂x
p̃0m + px(t)δm0

)T

,

∇ · q0m =
(

r
∂

∂r
+ 2

)
ṽ0m + ∂

∂x
ũ0m,

1q0m =


(

∂2

∂r 2 + 3
r

∂
∂r − α2

m

)
ṽ0m(

∂2

∂r 2 + 3
r

∂
∂r − α2

m

)
w̃0m

∇2ũ0m

 ;

(14a)

for n = 1,

∇ p̃1m =
(

1

r

∂

∂r
p̃1m,

(
r

∂

∂r
+ 2

)
p̃1m,

∂

∂x
p̃1m

)T

,

∇ · q1m =
(

r
∂

∂r
+ 4

)
f̃ 1m + 1

r

∂

∂r
g̃1m + 2

∂

∂x
ũ1m,

1q1m =


(

∂2

∂r 2 + 5
r

∂
∂r − α2

m

)
f̃ 1m(

∂2

∂r 2 + 1
r

∂
∂r − α2

m

)
g̃1m

∇2ũ1m

 ;

(14b)
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for n > 1,

∇ p̃nm =
((

1

r

∂

∂r
− (n − σn)

r 2

)
p̃nm,

(
1

r

∂

∂r
+ (n + σn)

r 2

)
p̃nm,

∂

∂x
p̃nm

)T

,

∇ · qnm =
(

r
∂

∂r
+ (n + σn + 2)

)
f̃ nm +

(
r

∂

∂r
− (n − σn − 2)

)
g̃nm + 2

∂

∂x
ũnm, (14c)

1qnm =


(

∂2

∂r 2 + 2σn+3
r

∂
∂r − (n+1)2−(σn+1)2

r 2 − α2
m

)
f̃ nm(

∂2

∂r 2 + 2σn+3
r

∂
∂r − (n−1)2−(σn+1)2

r 2 − α2
m

)
g̃nm

∇2ũnm

 ,

and

∇2ũnm =
(

∂2

∂r 2
+ 2σn + 1

r

∂

∂r
−

(
n2 − σ 2

n

)
r 2

− α2
m

)
ũnm

for arbitraryn ≥ 0. Note also, that axis conditions (13d) immediately follow from Corol-
lary 2.

As for the Fourier coefficients of nonlinearity we obtain

dnm = (
d f

nm, dg
nm, du

nm

)T
, du

nm = r −σn Du
nm (n ≥ 0),

d f
nm =

{
r −1Dv

0m, n = 0

r −(σn+1)
(
Dv

nm + 1
n

∂
∂ϕ

Dw
nm

)
, n > 0,

(15)

dg
nm =


r −1Dw

0m, n = 0(
Dv

1m − ∂
∂ϕ

Dw
1m

)
, n = 1

r −(σn+1)
(
Dv

nm − 1
n

∂
∂ϕ

Dw
nm

)
, n > 1.

Notice that in spite of the fact that Eqs. (13)–(14) do contain negative powers ofr , they may
be treated as nonsingular. This statement follows directly from Corollary 2 (new variables
may be represented as a series of even powers ofr in the vicinity ofr = 0), an explicit form of
∇ p̃nm, 1qnm, ∇ ·qnm, and axis conditions (13d). And what is more, not only Navier–Stokes
equations (13) are nonsingular but their divergence is nonsingular as well. The latter turns
out to be very important for the derivation of special matrix identities—the foundation
of an efficient discrete Navier–Stokes solver (see Section V). We stress in addition that
because of the asymptotic behaviour of the nonlinear termsDv,w,u

nm , Eqs. (15) also do not
contain singularities. This asymptotics is the basis of a fast and accurate algorithm for the
calculation of Navier–Stokes nonlinear terms and is analysed in Section VI.

V. DISCRETE NAVIER–STOKES EQUATIONS

To integrate numerically Navier–Stokes equations (13) we exploit the so-called method
of lines separating the time and spatial discretizations.
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A. Time Stepping

Temporal discretization is carried out by means of the implicit second-order scheme

qk+1
nm − qk

nm

1t
= −∇ p̃k+1

nm + ν1

(
qk+1

nm + qk
nm

2

)
+ dnm

(
qk+1 + qk

2

)
,

∇ · qk+1
nm = 0,

qk+1
nm

∣∣
r =R

= 0 (n ≥ 0),

∫ R

0
ũk+1

00 r dr =
∫ R

0
U0r dr,

f̃
k+1
nm

∣∣
r =0 = ũk+1

nm

∣∣
r =0 = p̃k+1

nm

∣∣
r =0 = 0 (n > 1), g̃k+1

nm

∣∣
r =0 = 0 (n > 3),

(16)

whereqk
nm = qnm(r, ϕ, x, tk), p̃k

nm = p̃nm(r, ϕ, x, tk), and1t = tk+1 − tk is a time step. That
is, we assume the use of a Crank–Nicolson scheme for viscous terms, backward Euler for
the pressure, and a certain second order scheme for nonlinear termd. Note that if you
use e.g., a Crank–Nicolson scheme for the pressure and introduce then a new variable
p̃k+1

nm = (p̃k+1
nm + p̃k

nm)/2 you will obtain just the same scheme as in the case of backward
Euler. In fact, the pressure term is eliminated then from Eqs. (16) (see Section V (D)).

To solve Eqs. (16) the following successive approximations method is utilized,(
2

1t
− ν1

)
(s)
q k+1

nm + 2∇ (s)
p̃ k+1

nm = anm, (17a)

∇ · (s)
q k+1

nm = 0, (17b)

(s)
q k+1

nm

∣∣
r =R = 0 (n ≥ 0),

∫ R

0

(s)
ũ k+1

00 r dr =
∫ R

0
U0r dr, (17c)

(s)

f̃ k+1
nm

∣∣
r =0 = (s)

ũ k+1
nm

∣∣
r =0 = (s)

p̃ k+1
nm

∣∣
r =0 = 0 (n > 1),

(s)
g̃ k+1

nm

∣∣
r =0 = 0 (n > 3), (17d)

wheres= 1, 2, . . . , S is the iteration counter. Here the right-hand side of Eq. (17a) is
a known value being the function of velocity components relating to time leveltk and
preceding iterative loop:

anm =
(

2

1t
+ ν1

)
qk

nm + 2dnm

 (s−1)
q k+1 + qk

2

 .

If we calculate initial approximation by the formulas

(0)
q k+1

nm = 2qk
nm − qk−1

nm ,

then Eqs. (17) define the time integration scheme ofO(1t2) approximation order for
arbitraryS≥ 1. For all the computer runs described in Section VIII(C) we utilizedS= 2
thus carrying out calculations by means of a certain explicit scheme of predictor-corrector
type. Exhaustivea priori analysis of scheme (17) accuracy and stability may be conducted
by examining the eigenvalues spectrum of the linearized discrete Navier–Stokes equations
(see Section VIII(B)).
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B. Interpolation Polynomials and Collocation Method

New variablesqnm as functions ofr we approximate by polynomials

qnm(r, ϕ, x, t) =
Q∑

j =0

qnmj(ϕ, x, t)h j (r ), qnmj = qnm|r =r j ,

h j = (2% j /Q)

Q∑
l=0

%l T2l (r j /R)T2l (r/R), j = 0, 1, . . . , Q (18)

r j = Rcos
π j

2Q
, %0 = %Q = 1/2, %l = 1 (l 6= 0, Q).

HereT2l are Chebyshev polynomials of the first kind. It should be stressed that only even
Chebyshev polynomials are used in the expansion (18) andr j varies from 0 forj = Q to R
for j = 0, so that at the origin there is no clustering of collocation points inr . The possibility
of representation (18) follows immediately from Corollary 2 and formulas (12). Notice also
that spectral representations (18) do not meet exactly pole conditions typical for analytic
functions. We require the weaker conditions (13d) to be satisfied. If the sought for infinitely
differentiable Navier–Stokes solutions turn out to be analytic they may be smoothly extended
to the functions on the interval [−R, R] thus providing spectral convergence when using a
half Chebyshev grid on radial nodes.

We continue by defining the(Q + 1) × (Q + 1) matrices

Cl j = d2h j

dr2

∣∣∣∣
r =rl

, Bl j = 1

r

dhj

dr

∣∣∣∣
r =rl

,

Dl j = r
dhj

dr

∣∣∣∣
r =rl

, Sl j = h j (r ) − h j (0)

r 2

∣∣∣∣
r =rl

,

El j = δl j , l , j = 0, 1, . . . , Q

(19)

being the finite-dimensional analogues of the corresponding differential operators from
Eqs. (14). So, for example, we use the following approximation for the values of the second
derivative,

∂2qnm

∂r 2

∣∣∣∣
r =rl

=
Q∑

j =0

Cl j qnmj, l = 0, 1, . . . , Q,

and similar formulas for(1/r )∂qnm/∂r |r =rl andr ∂qnm/∂r |r =rl .
As to the operator 1/r 2, we obtain with regard to axis conditions (13d)

1

r 2
g̃nm|r =rl =

Q∑
j =0

Sl j g̃nmj, l = 0, 1, . . . , Q, (20)

for arbitraryn > 3. Since an equalitỹgnm/r 2 = (g̃nm − g̃nm|r = 0)/r 2 is correct forn > 3,
formulas (20) may be used to approximate expressions [(n − 1)2 − (σn + 1)2](1/r 2)g̃nm

in Eqs. (14c) for arbitraryn > 1. The reason is that forn = 2, 3 (wheng̃nm|r = 0 6≡ 0) an
expression in square brackets becomes zero. Formulas (20) may also be used to approximate
expressions(1/r 2) f̃ nm, (1/r 2)ũnm, and(1/r 2)p̃nm in Eqs. (14c) whenn > 1.

In spite of the fact that Eqs. (19) do contain negative powers ofr , computations may be
conducted without any loss of accuracy provided that recurrence relations for Chebyshev
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polynomials (see, e.g., [22]) are exploited. The resultant computational formulas for matrix
elements we present in Appendix A.

For the discretization of Eqs. (17) inr we make use of the pseudospectral technique with
collocation nodesr j defined in(18). Finally, we obtain the following set of semi-discrete
equations (the caseαm, n > 0):(

2

1t
E − νL f

)
F|l + Rf P|l = τ

f
0 δl0 + τ

f
Q(1 − δn1)δl Q + a f

l ,

(21a)
l = 0, 1, . . . , Q, F0 = 0, FQ = 0 (n > 1)(

2

1t
E − νLg

)
G|l + RgP|l = τ

g
0 δl0 + r g

Q(1 − δn1 − δn2 − δn3)δl Q + ag
l ,

(21b)
l = 0, 1, . . . , Q, G0 = 0, GQ = 0 (n > 3)(

2

1t
E − νLu

)
U|l + ∂

∂x
Pl = τ u

0 δl0 + τ u
Q(1 − δn1)δl Q + au

l ,

(21c)
l = 0, 1, . . . , Q, U0 = 0, UQ = 0 (n > 1)

H f F|l + H gG|l + 2
∂

∂x
Ul = 0, l =

{
0, 1, . . . , Q, n = 1
0, 1, . . . , Q − 1, n > 1,

(21d)
PQ = 0 (n > 1).

Hereτ f
l , τ

g
l , τ u

l (l = 0, Q)are the so-called tau terms [23] having the meaning of equations

residual at the boundaries of domainG; δl j is the Kronecker delta;P def= (P0, P1, . . . , PQ)T ,

Pj (ϕ, x) = 2
(s)
p̃ k+1

nmj = 2
(s)
p̃ k+1

nm |r = r j ; F def= (F0, F1, . . . , FQ)T , Fj (ϕ, x) =
(s)

f̃ k+1
nmj , analo-

gously forG andU. Termsa f
l , ag

l , andau
l include the discretization of nonlinear terms and

are known values at a new time level:

a f
l =

(
2

1t
E + νL f

)
Fk|l + 2d f

nml

 (s−1)
q k+1 + qk

2

 ,

(22)
Fk def= (

Fk
0 , Fk

1 , . . . , Fk
Q

)T
, Fk

j = f̃
k
nmj; d f

nml = d f
nm

∣∣
r =rl

,

and similarly forag
l , au

l . Equations analogous to (21) and corresponding ton = 0 andαm = 0
we present in Appendix B.

In the casen > 0, (Q + 1) × (Q + 1) matricesL f , Lg, Lu, Rf , Rg, H f , and H g are
defined by formulas(

L f

Lu

)
= C +

(
2σn + 3
2σn + 1

)
B −

(
(n + 1)2 − (σn + 1)2

n2 − σ 2
n

)
S− α2

mE,

Lg =
{

C + B − α2
mE, n = 1

C + (2σn + 3)B − ((n − 1)2 − (σn + 1)2)S− α2
mE, n > 1,

(23)

Rg =
{

D + 2E, n = 1

B + (σn + n)S, n > 1,
H g =

{
B, n = 1

D + (σn − n + 2)E, n > 1,

Rf = B + (σn − n)S, H f = D + (σn + n + 2)E.
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Grid functionsF, G, U, andP are strongly coupled in Eqs. (21). The latter makes it
somewhat difficult to suggest a fast and economical method of solution. On the other
hand, suppose there exists an efficient solver for Eqs. (21a)–(21c) provided thatP are
known values. In that case it is desirable to reduce Eqs. (21) to the form that allows us to
evaluate firstP irrespective ofF, G, andU. The possibility of such a solution procedure for
Eqs. (21) is considered in the following two subsections and in Section VII.

C. Special Matrix Identities

Easily verifiable differential identities

∇ · 1qnm ≡ ∇2(∇ · qnm), ∇ · ∇ p̃nm ≡ ∇2p̃nm, n, m ≥ 0,

have in casen > 0 the following semi-discrete analogues

H f L f F + H gLgG + 2
∂

∂x
LuU = Lu

(
H f F + H gG + 2

∂

∂x
U

)
, (24a)

1

2

(
H f Rf + H g Rg − 2α2

mE
)
P = LuP. (24b)

Again, the casen = 0 is considered separately in Appendix B. Formulas (24) follow from

THEOREM2. Suppose that differential operators

C = d2

dr2
, B = 1

r

d

dr
, D = r

d

dr

and operator S

Sh= 1

r 2
(h(r ) − h(0))

are defined on interpolation polynomials

h j (r ) = (2% j /Q)

Q∑
l=0

%l T2l (r j )T2l (r ), j = 0, 1, . . . , Q,

r j = cosπ j/2Q, %0 = %Q = 1/2, %l = 1 (l 6= 0, Q).

Assume that(XY) is one of the following ordered operator couples:

(C B), (BC), (C D), (DC), (CS), (B D), (DB),

(BS), (DS), (SD), (CC), (DD), (B B).

The matrix identity

Td = XdYd

then holds in the case of matrices Xd, Yd, and Td with elements

Xd
l j = Xhj |r =rl , Yd

l j = Y hj |r =rl , (Td)l j = XY hj |r =rl .
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Proof. It can be easily shown (see, e.g., [22]) that the result of operation withC, B, D,

or Son polynomialsT2q(r ), q = 0, 1, . . . , Q may be represented by a (truncated) series of

Chebyshev polynomials of degree not higher than 2q. Denoting withX̃
d
, Ỹ

d
the matrices

of expansion coefficients, we obtain then

Xd
lp = Xhp|r =rl = 2%p

Q

Q∑
q′=0

%q′ T2q′(r p)XT2q′(r )|r =rl

= 2%p

Q

Q∑
q′=0

%q′ T2q′(r p)

q′∑
n=0

X̃
d
q′nT2n(rl ), (25a)

Yd
pj = Y hj |r =r p = 2% j

Q

Q∑
q=0

%qT2q(r j )

q∑
m=0

Ỹ
d
qmT2m(r p), (25b)

Td
l j = XY hj |r =rl = 2% j

Q

Q∑
q=0

q∑
m=0

m∑
n=0

%qT2q(r j )Ỹ
d
qmX̃

d
mnT2n(rl ). (25c)

Multiplying Xd by Yd and taking into account Eqs. (25a), (25b) we have

(XdYd)l j =
Q∑

p=0

Xd
lpYd

pj

= 2% j

Q

Q∑
q=0

q∑
m=0

Q∑
q′=0

q′∑
n=0

X̃
d
q′nT2n(rl )%qT2q(r j )Ỹ

d
qm

[
2%q′

Q

Q∑
p=0

%pT2q′(r p)T2m(r p)

]
.

Since the expression in square brackets equalsδq′m it follows that

(XdYd)l j = 2% j

Q

Q∑
q=0

q∑
m=0

m∑
n=0

%qT2q(r j )Ỹ
d
qmX̃

d
mnT2n(rl ). (26)

Comparing Eqs. (25c) and (26) we obtain

Td = XdYd.

This completes the proof of a theorem.

One can easily deduce from Theorem 2 and formulas (19) and (23) the validity of matrix
identities

H f L f = Lu H f , H gLg = Lu H g, (27a)

H f Rf = H g Rg = Lu + α2
mE, (27b)

and, finally, the validity of relations (24).

D. Discrete Poisson Equation for Pressure

We now wish to use (24) to reduce Eqs. (21) to the form with almost decoupled grid func-
tionsP, F, G, U and tau termsτ f , τ g, τ u. In this section we consider the caseαm, n > 0;
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equations corresponding ton = 0 andαm = 0 may be easily derived using additional for-
mulas of Appendix B.

We operate withH f , H g and∂/∂x on Eqs. (21a), (21b), and (21c), respectively. Summing
up the results and taking into account Eqs. (21d) we obtain then

LuP|l = ∂

∂x
au

l + 1

2
H f a f |l + 1

2
H gag|l + 1

2
τ

f
0 H f

l0 + 1

2
τ

f
Q(1 − δn1)H f

l Q

+ 1

2
τ

g
0 H g

l0 + 1

2
τ

g
Q(1 − δn1 − δn2 − δn3)H g

l Q,

l = 1, 2, . . . , Q (n = 1), l = 1, 2, . . . , Q − 1 (n > 1), (28a)

H f F|l=0 + H gG|l=0 = 0, PQ = 0 (n > 1),

wherea f def= (a f
0 , a f

1 , . . . , a f
Q)T and analogously forag. Supplementing these equations by

the ones following from (21)(
2

1t
−νL f

)
F|l + Rf P|l = a f

l + τ
f

0 δl0 + τ
f

Q(1 − δn1)δl Q, (28b)

l = 0, 1, . . . , Q, F0 = 0, FQ = 0 (n > 1)(
2

1t
−νLg

)
G|l + RgP|l = ag

l + τ
g
0 δl0 + τ

g
Q(1 − δn1 − δn2 − δn3)δl Q, (28c)

l = 0, 1, . . . , Q, G0 = 0, GQ = 0 (n > 3)

∂

∂x
Ul = −1

2
H f F|l − 1

2
H gG|l , l =

{
0, 1, . . . , Q, n = 1

0, 1, . . . , Q − 1, n > 1,

(28d)

U0 = 0, UQ = 0 (n > 1),

we obtain the set of Eqs. (28) equivalent to (21) and allowing the solution by means of the
efficient influence matrix technique with tau correction [21]. However, when applying this
technique to (28) we are faced with certain peculiarities. We briefly discuss the situation in
Section VII.

For the discretization inϕ and x we make use of Galerkin trigonometric approxima-
tion. In this case the unknown quantities areq(i )

nml(t), i = 1, 2, 3, 4 —the values of Fourier
coefficients in collocation nodesrl ,

qnm(rl , ϕ, x, t) = (
q(1)

nml cosαmx + q(3)
nml sinαmx

)
cosnϕ

+ (
q(2)

nml cosαmx + q(4)
nml sinαmx

)
sinnϕ,

and analogously forp(i )
nml(t) and components of nonlinearity(du, f,g)

(i )
nml(t).

It should be stressed that the reduction of Eqs. (21) to the form (28) became possible just
due to the new change of variables (12). Otherwise, the differential operators of Eqs. (14)
and corresponding collocation matricesL f,g,u, H f,g, Rf,g may have a form not satisfying
relations (27), (24). As a result, the right hand side of Eq. (28a) will be the function of
unknown valuesFk+1, Gk+1, andUk+1, the decoupling ofF, G, U, andP will not happen,
and there will be no opportunity to use influence matrices. Certainly, the aforesaid is true
only if an implicit scheme is utilized for the viscous terms of Navier–Stokes equations. With
an explicit treatment of viscous terms one can make use of much simpler solution procedures
[7]. However, the latter essentially changes the stability boundary of the scheme.
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An overall algorithm efficiency depends not only on the quality of a discrete Navier–
Stokes solver but also on the availability of a fast and accurate method for the evaluation of
nonlinear termsd f,g,u

nml in Eqs. (22). Such an algorithm was developed and we present it in
the following section.

VI. FAST AND ACCURATE COMPUTATION OF NONLINEAR TERMS

The calculation of nonlinear termsd f,g,u
nm defined by (15) may be ill-conditioned when

r → 0. Negative powers ofr also occur in the formulas for vorticity components necessary
for the Dv, Dw, andDu evaluation. Nevertheless, the algorithm presented below allows us
to perform fast calculations of the Navier–Stokes nonlinear terms without loss of accuracy.

Boundedness and smoothness of functionsd f,g,u
nm (the requirement for high accuracy

calculations) follows directly from Eqs. (13a), (14), from the asymptotics of new variables
at r → 0 (Eqs. (9), (12)), and from axis conditions (13d). To avoid singularities the new
algorithm exploitsDu

nm, Dv
nm+ 1

n
∂
∂ϕ

Dw
nm, andDv

nm− 1
n

∂
∂ϕ

Dw
nm representations as a series of

positive powers ofr . More exactly, the primary terms of such representations are explicitly
extracted and used then to avoid singularity problems in calculating the values ofd f,g,u

nm .
Since each of the functionsDu

nm, Dv
nm, Dw

nm is expressed in terms of pairwise products of
velocity and vorticity components the straightforward way to obtain the desired asymptotics
is to evaluate directly the corresponding convolution sums. However, such an approach is of
little use due to computational inefficiency. On the other hand, the routine implementation
of a pseudospectral technique (that allows fast Fourier transforms to compute products)
is completely useless since the behaviour of velocity and vorticity Fourier coefficients at
r → 0 strongly depends on azimuthal wavenumbers (Corollary 2). Below we suggest a
certain combination of spectral and pseudospectral approaches providing that the major
amount of computations is carried out by means of fast transforms.

We clarify the key aspects of a new algorithm considering the calculation of Fourier co-
efficients(du)

(i )
nml, m, n ≥ 0; l = 0, 1, . . . , Q, i = 1, 2, 3, 4 corresponding to the streamwise

component of nonlinearity. For this purpose we rewrite Eq. (10) in the form

v =
N∑

n=0

M∑
m=0

vnm(r, ϕ, x, t) =
N∑

n=0

vC
n (r, x, t) cosnϕ +

N∑
n=1

vS
n(r, x, t) sinnϕ. (29)

Similarly, we introduce functionsqC,S
n (r, x, t), (du)C,S

n (r, x, t). With regard for (15) we can
obtain then

Du(r, ϕ, x, t)
def= vωϕ − wωr =

N∑
n=0

r σn
(
(du)C

n cosnϕ + (du)S
n sinnϕ

)
. (30)

Next, we writev, w, ωr , andωϕ as

v = r v̄C
0 +

A1︷ ︸︸ ︷
v̄C

1 cosϕ + v̄S
1 sinϕ + r

A2︷ ︸︸ ︷
N∑

n=2

r σn
(
v̄C

n cosnϕ + v̄S
n sinnϕ

)
, (31a)

ωϕ = r (ω̄ϕ)C
0 + aC cosϕ + aS sinϕ︸ ︷︷ ︸

B1

+ r
N∑

n=1

r σn
(
(ω̄ϕ)C

n cosnϕ + (ω̄ϕ)S
n sinnϕ

)
︸ ︷︷ ︸

B2

, (31b)
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and analogously

w = r w̄C
0 + A3 + r A4, ωr = r (ω̄r )

C
0 + B3 + r B4, (31c)

whereA3 and A4 result fromA1, A2 by replacing ¯vC,S
n onto w̄C,S

n , B4 from B2 by replac-
ing (ω̄ϕ)C,S

n onto(ω̄r )
C,S
n , andB3 = −aS cosϕ + aC sinϕ. Herev̄C,S

n (r, x, t), w̄C,S
n (r, x, t),

(ω̄r )
C,S
n (r, x, t), (ω̄ϕ)C,S

n (r, x, t), aC(r, x, t), andaS(r, x, t) are smooth regular functions of
ther -variable defined by the formulas

v̄C
0 = ṽC

0 , v̄C,S
n = 1

2

(
r 2δn1 f̃

C,S
n + g̃C,S

n

)
,

w̄C
0 = w̃C

0 , w̄C,S
n = 1

2

( ∓ r 2δn1 f̃
S,C
n ± g̃S,C

n

)
,

aC,S = −ũC,S
1 + 1

2

∂

∂x
g̃C,S

1 ,

(ω̄r )
C
0 = − ∂

∂x
w̃C

0 , (ω̄r )
C,S
1 = ±1

2

∂

∂x
f̃

S,C
1 , (32)

(ω̄r )
C,S
n = ± n

ũS,C
n

r 2
± 1

2

∂

∂x

(
f̃

S,C
n − g̃S,C

n

)
,

(ω̄ϕ)C
0 = ∂

∂x
ṽC

0 − 1

r

∂

∂r
ũC

0 , (ω̄ϕ)
C,S
1 = 1

2

∂

∂x
f̃

C,S
1 − 1

r

∂

∂r
ũC,S

1 ,

(ω̄ϕ)C,S
n = 1

2

∂

∂x

(
f̃

C,S
n + g̃C,S

n

) − σn
ũC,S

n

r 2
− 1

r

∂

∂r
ũC,S

n .

By substituting expressions (31) into Eq. (30) we directly obtain

(du)C
0 (r, x, t) = 1

2
aC

(
v̄C

1 − w̄S
1

) + 1

2
aS

(
v̄S

1 + w̄C
1

)
+ r

(
(C12)

C
0 + (C21)

C
0 − (C34)

C
0 − (C43)

C
0

)
+ r 2

(
v̄C

0 (ω̄ϕ)C
0 − w̄C

0 (ω̄r )
C
0 + (C22)

C
0 − (C44)

C
0

)
, (33a)

(du)C,S
n (r, x, t) = δn1

(
aC,Sv̄C

0 ± aS,Cw̄C
0 + v̄

C,S
1 (ω̄ϕ)C

0 − w̄
C,S
1 (ω̄r )

C
0

)
+ (1 − δn1)r

2
(
v̄C,S

n (ω̄ϕ)C
0 − w̄C,S

n (ω̄r )
C
0

)
+ 1

2
δn2

(
aC,S

(
v̄C

1 +w̄S
1

)∓aS,C
(
v̄S

1 −w̄C
1

))+r 2
(
(ω̄ϕ)C,S

n v̄C
0 −(ω̄r )

C,S
n w̄C

0

)
+ r 1−σn

(
(C12)

C,S
n + (C21)

C,S
n + r (C22)

C,S
n − (C34)

C,S
n

− (C43)
C,S
n − r (C44)

C,S
n

)
, n = 1, 2, . . . , N, (33b)

where functions(Ci j )
C,S
n (r, x, t) are defined by the relations

2N∑
n=0

(Ci j )
C
n cosnϕ +

2N∑
n=1

(Ci j )
S
n sinnϕ = Ai Bj . (34)

From (34) and the explicit form of functionsAi , Bj it follows that almost all functions
(Ci j )

C,S
n of Eqs. (33) may be calculated by means of simple formulas with a minimal number
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of arithmetic operations involved. For example, from Eqs. (31) and (34) it follows that

(C12)
C
n = 1

2
r 1−σn

(
v̄C

1 (ω̄ϕ)C
n−1 − v̄S

1 (ω̄ϕ)S
n−1

)
(1 − δn0 − δn1)

+ 1

2
r 1−σn

(
v̄C

1 (ω̄ϕ)C
n+1 + v̄S

1 (ω̄ϕ)S
n+1

)
(1 − δnN), (35)

and similar formulas for(C12)
S
n, (C21)

C,S
n , (C34)

C,S
n , and(C43)

C,S
n . As to functions(C22)

C,S
n

and(C44)
C,S
n , an ordinary pseudospectral technique with the 3/2-rule to avoid aliasing may

be utilized.
Summarizing, we suggest the following computational procedure for the Fourier coeffi-

cients of nonlinearity:
(1) Usingq(i )

nml we compute the values of functionsqC,S
n (r, x, t) at the set of points

rl = Rcos(π l/2Q), l = 0, 1, . . . , Q; xi = iX/2M∗, i = − M∗ + 1, − M∗ + 2, . . . , M∗,
2M∗ ≥ 3M + 1:(

qC
n

qS
n

)
(rl , xi , t) =

M∑
m=0

[(
q(1)

nml

q(2)
nml

)
cos

πmi

M∗
+

(
q(3)

nml

q(4)
nml

)
sin

πmi

M∗

]
. (36)

(2) Using discrete analogues to relations (32) we calculate the values of functions
v̄C,S

n , w̄C,S
n , ( ω̄r )

C,S
n , ( ω̄ϕ)C,S

n , aC,S. For example,

( ω̄r )
C
n (rl , xi , t) = n

Q∑
j =0

Sl j ũ
s
n(r j , xi , t)

+ 1

2

M∑
m=0

(
−αm

(
f̃

(2)

nml − g̃(2)
nml

)
sin

πmi

M∗
+ αm

(
f̃

(4)

nml − g̃(4)
nml

)
cos

πmi

M∗

)
, n > 1. (37)

Note that discrete Fourier transforms in (36), (37) may be evaluated by the Fast Fourier
Transform algorithm.

(3) Next,(du)C,S
n (rl , xi , t), n = 0, 1, . . . , N are calculated according to (33).

(4) The desired Fourier coefficients(du)
(i )
nml are obtained finally by means of the inverse

discrete Fourier transform.
In addition, we briefly consider the evaluation ofd f anddg components of nonlinearity.

Similarly to (31) we represent the streamwise components of velocity and vorticity in the
form (

u
ωx

)
=

(
ūC

0

(ω̄x)
C
0

)
+ r

[ (
ūC

1

(ω̄x)
C
1

)
cosϕ +

(
ūS

1

(ω̄x)
S
1

)
sinϕ

]

+ r 2
N∑

n=2

r σn

[ (
ūC

n

(ω̄x)
C
n

)
cosnϕ +

(
ūS

n

(ω̄x)
S
n

)
sinnϕ

]
, (38)

where

ūC
0 = ũC

0 , ūC,S
1 = ũC,S

1 , ūC,S
n = ũC,S

n

r 2
,

(ω̄x)
C
0 = 2w̃C

0 + r
∂

∂r
w̃C

0 , (ω̄x)
C,S
1 = ∓1

2

(
4 f̃

S,C
1 + r

∂

∂r
f̃

S,C
1 − 1

r

∂

∂r
g̃S,C

1

)
, (39)

(ω̄x)
C,S
n = ∓1

2

(
f̃

S,C
n

r 2
(n+σn +2)+ g̃S,C

n

r 2
(n−σn −2)+ 1

r

∂

∂r
f̃

S,C
n − 1

r

∂

∂r
g̃S,C

n

)
, n > 1.
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We stress that analogously (32), formulas (39) define smooth regular functions of ther -
variable. As it follows from axis conditions (13d) and Eqs. (18) the evaluation of these
functions may be carried out without any loss of accuracy.

According to (31) and (38) we obtain(
Dv

Dw

)
def=

(
wωx − uωϕ

uωr − vωx

)
=

(
w̄C

1 (ω̄x)
C
0 −aCūC

0

−v̄C
1 (ω̄x)

C
0 −aSūC

0

)
cosϕ +

(
w̄S

1(ω̄x)
C
0 −aSūC

0

−v̄S
1 (ω̄x)

C
0 +aCūC

0

)
sinϕ

+
N∑

n=0

r σn+1

[ (
(dv)C

n

(dw)C
n

)
cosnϕ +

(
(dv)S

n

(dw)S
n

)
sinnϕ

]
, (40)

where(dv)C,S
n and(dw)C,S

n are defined by formulas similar to (33). As to functions(d f )C,S
n

and(dg)C,S
n it follows according to (15) that

(d f )
C,S
1 = (dv)

C,S
1 ± (dw)

S,C
1 ∓ (ω̄x)

C
0 f̃

S,C
1 ,

(d f )C,S
n = (dv)C,S

n ± (dw)S,C
n , n > 1,

(dg)
C,S
1 = ±(ω̄x)

C
0 g̃S,C

1 − 2aC,SūC
0 + r 2

(
(dv)

C,S
1 ∓ (dw)

S,C
1

)
,

(dg)C,S
n = (dv)C,S

n ∓ (dw)S,C
n , n > 1.

In all other respects the calculation of the desired Fourier coefficients(d f )
(i )
nml and(dg)

(i )
nml

is analogous to the evaluation of(du)
(i )
nml considered above.

VII. IMPLEMENTATION OF INFLUENCE MATRICES

An efficient solution procedure for the equations similar to (28) was originally suggested
in Cartesian coordinates by Kleiser and Schumann [21]. Thereupon it was an object of
modifications (see, e.g., [17, 23, 24]) and is known now as an influence matrix method with
tau correction. However, Eqs. (28) possess certain peculiarities associated with distinct
boundary conditions at various azimuthal wavenumbers. We briefly consider below the
principal aspects of influence matrices implementation in this case. In what follows we
limit ourselves toαm, n > 0. Equations corresponding toαm = 0 andn = 0 can be obtained
in a similar way using formulas from Appendix B.

Solutions of Eqs. (28) we seek in the form Pl

Fl

Gl

 =

 P1
l

F1
l

G1
l

 + τ
f

0

 P2a
l

F2a
l

G2a
l

 + τ
g
0

 P2b
l

F2b
l

G2b
l

 + τ
f

Q(1 − δn1)

 P2c
l

F2c
l

G2c
l



+ τ
g
Q(1 − δn1 − δn2 − δn3)

 P2d
l

F2d
l

G2d
l

 + P0

 P3
l

F3
l

G3
l

 , (41)

l = 1, 2, . . . , Q f for P, F; l = 1, 2, . . . , Qg for G,

where

Q f
def=

{
Q, n = 1
Q − 1, n > 1; Qg

def=
{

Q, n = 1, 2, 3
Q − 1, n > 3.
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VectorsPk def= (Pk
0 , Pk

1 , . . . , Pk
Q)T as well asFk, Gk(k = 1, 2a, 2b, 2c, 2d, 3) are the

solutions of the following discrete boundary-value problems:

LuP1|l = ∂

∂x
au

l + 1

2
H f a f |l + 1

2
H gag|l , l = 1, 2, . . . , Q f ,

P1
0 = 0, P1

Q = 0 (n > 1),

(42a)

(
2

1t
E − νL f

)
F1|l = −Rf P1|l + a f

l , l = 1, 2, . . . , Q f ,

F1
0 = 0, F1

Q = 0 (n > 1),

(42b)

(
2

1t
E − νLg

)
G1|l = −RgP1|l + ag

l , l = 1, 2, . . . , Qg,

G1
0 = 0, G1

Q = 0 (n > 3);
(42c)

LuPk|l = 1
2 Sk

l , l = 1, 2, . . . , Q f ,

Pk
0 = 0, Pk

Q = 0 (n > 1),(
2

1t
E − νL f

)
Fk|l = −Rf Pk|l , l = 1, 2, . . . , Q f ,

Fk
0 = 0, Fk

Q = 0 (n > 1),(
2

1t
E − νLg

)
Gk|l = −RgPk|l , l = 1, 2, . . . , Qg,

Gk
0 = 0, Gk

Q = 0 (n > 3),

(43)

wherek takes the values 2a, 2b, 2c, 2d andS2a
l = H f

l0, S2b
l = H g

l0, S2c
l = H f

l Q, S2d
l = H g

l Q ;

LuP3|l = 0, l = 1, 2, . . . , Q f ,

P3
0 = 1, P3

Q = 0 (n > 1),(
2

1t
E − νL f

)
F3|l = −Rf P3|l , l = 1, 2, . . . , Q f ,

F3
0 = 0, F3

Q = 0 (n > 1),(
2

1t
E − νLg

)
G3|l = −RgP3|l , l = 1, 2, . . . , Qg,

G3
0 = 0, G3

Q = 0 (n > 3).

(44)

The unknown coefficientsτ f
0 , τ

f
Q, τ

g
0 , τ

g
Q, andP0 (the latter being the value of the total

pressure Fourier coefficient on a pipe wall) can be evaluated from

H f F|l=0 + H gG|l=0 = 0, n > 0, (45a)

−νL f F|l=0 + Rf P|l=0 − τ
f

0 − a f
0 = 0, n > 0, (45b)

−νLgG|l=0 + RgP|l=0 − τ
g
0 − ag

0 = 0, n > 0, (45c)

−νL f F|l=Q + Rf P|l=Q − τ
f

Q − a f
Q = 0, n > 1, (45d)

−νLgG|l=Q + RgP|l=Q − τ
g
Q − ag

Q = 0, n > 3. (45e)

Equations (45) directly follow from (28). In casen = 1 the necessary parametersτ
f

0 , τ
g
0 ,

andP0 are evaluated from the first three of them. Forn = 2, 3 the desiredτ f
0 , τ

g
0 , τ

f
Q, P0 can
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be obtained as a solutions of Eqs. (45a)–(45d). Whenn > 3 we calculateτ f
0 , τ

g
0 , τ

f
Q, τ

g
Q,

andP0 by means of all five equations (45).
Equations (45) have to be resolved at each timestep and iteration loop. They may be

reduced to the form

Ax = b,

wherex = (τ
f

0 , τ
g
0 , τ

f
Q, τ

g
Q, P0)

T , A is the constant matrix (its own for each pair of wavenum-
bers (m, n)) and the right sideb depends on time being the function ofF1, G1, P1. Matrices
A−1 (their maximum order equals 5) may be evaluated only once in a pre-processing step.
The same is true for grid functionsFk, Gk, andPk, k = 2a, 2b, 2c, 2d, 3—the solutions of
Eqs. (43), (44).

Similarly to (45), Eqs. (42) must be solved at each timestep. An explicit form of matrices
Lu, (2/1t − νL f ) and(2/1t − νLg) (see Eqs. (23)) allows one to exploit for this purpose
an efficient collocation-diagonalization technique [25].

VIII. NUMERICAL RESULTS

Numerical verification of the algorithm includes two issues. First, we compare spec-
tral characteristics of the pipe Poiseuille flow stability problem with those of the discrete
linearized Navier–Stokes operator. Second, we present results of direct Navier–Stokes simu-
lation of laminar-turbulent transition in a circular pipe at Reynolds numberRe= Ū D/ν =
4000, based on the mean velocity (see also Eq. (3c)) and pipe diameterD = 2R. In this
section, unless otherwise stipulated, the centreline velocity of parabolic base flow and pipe
radiusR are used as units of velocity and length. Computations were carried out on the
Hewlett Packard VECTRA PC and Sun SPARCcenter 2000.

A. Pipe Poiseuille Flow Linear Stability Problem

Equations (13) have stationary solutions

ṽ00 = w̃00 = 0, ũ00 = U0(r ) = 1 − r 2, px(t) = −4ν,

p̃00 = 1

2
(U0)2 + const,

(46)

which describe laminar fluid flows inG.
We linearize (13) about arbitrary solution (46) neglecting the terms being quadratic with

respect to disturbance amplitudes. In addition, it is convenient to exploit dependent variables
vF

nm(r, t) andqF
nm(r, t) instead of functionsvnm(r, ϕ, x, t), qnm(r, ϕ, x, t) (see Eq. (10)).

Conducting spatial discretization as it was recommended in previous sections we obtain
the following linear stability problem for pipe Poiseuille flow (for definiteness we consider
below the caseαm 6= 0, n > 0),

λ̄Fl = −i αmU0(rl )Fl − Rf P|l + νL f F|l + τ
f

0 δl0 + τ
f

Q(1 − δn1)δl Q, (47a)

l = 0, 1, . . . , Q, F0 = 0, FQ = 0 (n > 1)

λ̄Gl = −i αmU0(rl )Gl − RgP|l + νLgG|l + τ
g
0 δl0 + τ

g
Q(1 − δn1 − δn2 − δn3)δl Q, (47b)
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l = 0, 1, . . . , Q, G0 = 0, GQ = 0 (n > 3)

λ̄Ul = −i αmU0(rl )Ul + (
r 2

l Fl + al Gl
) − i αmPl + νLuU|l + τ u

0 δl0 + τ u
Q(1 − δn1)δl Q,

(47c)
l = 0, 1, . . . , Q, U0 = 0, UQ = 0 (n > 1)

H f F|l + H gG|l + 2i αmUl = 0, l = 0, 1, . . . , Q f ,

PQ = 0 (n > 1),
(47d)

whereν = 1/Re; al = 1(n = 1), al = r 2
l (n > 1); Q f is defined in (41);F, G, U, P are the

disturbances of the base flow (46) corresponding to wavenumbersαm, n: F = (F0, F1, . . . ,

FQ)T , Fl = e−λ̄t f̃
F
nm(rl , t) and analogously forG, U, P.

Equations (47) determine stability characteristics of pipe Poiseuille flow in the linear
approach. Once these equations are reduced to the standard form

λ̄x = T̄x, (48)

eigenvalues̄λ and eigenvectorsx may be found by means of the QR algorithm. The finite set
λ̄k = λ̄k(αm, n, Re, Q), reλ̄k ≥ reλ̄k+1, k = 1, 2, . . . , K < ∞ is usually considered as an ap-
proximation toa priori unknown eigenvaluesλk(αm, n, Re), k = 1, 2, . . . of the differential
problem.

Reduction of Eqs. (47) to the canonical form (48) is an important stage of the solution
procedure. Below we consider a reduction algorithm that is economical and weakly sensitive
to the round-off errors. As far as we known, similar algorithms were not used before, even
in Cartesian coordinates where the implementation of influence matrices is straightforward.

We multiply Eq. (47c) by 2i αm and operate with matricesH f , H g on Eqs. (47a), (47b),
respectively. Summing up the results we obtain (making use of Eq. (47d) and matrix
identities (24)) the following discrete Poisson equation for pressure:

LuP|l = α2
mU0(rl )Ul − 1

2
i αm

Q∑
j =0

(
H f

l j U0(r j )Fj + H g
l j U

0(r j )G j
)

+ i αm
(
r 2

l Fl + al Gl
) + 1

2
τ

f
0 H f

l0 + 1

2
τ

f
Q(1 − δn1)H f

l Q

+ 1

2
τ

g
0 H g

l0 + 1

2
τ

g
Q(1 − δn1 − δn2 − δn3)H g

l Q, l = 1, 2, . . . , Q f . (49)

To expressU and tau termsτ f
0 , τ

f
Q, τ

g
0 , τ

g
Q throughF, G, andP we utilize Eqs. (47a),

(47b) for l = 0, Q and equalities (47d). After substituting the result into the right side of
Eq. (49) and exploiting the remaining equations from (47a), (47b) we arrive at the equivalent
spectral problem of the form

L̂uP|l = Af F|l + AgG|l , l = 1, 2, . . . , Q f ,
(50a)

(H f F + H gG)|l=0 = 0, PQ = 0 (n > 1),

λ̄Fl = −i αmU0(rl )Fl − Rf P|l + νL f F|l , l = 1, 2, . . . , Q f ,

(50b)
F0 = 0, FQ = 0 (n > 1)
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λ̄Gl = −i αmU0(rl )Gl − RgP|l + νLgG|l , l = 1, 2, . . . , Qg,
(50c)

G0 = 0, GQ = 0 (n > 3).

HereL̂u is a real andAf , Ag are complex-valued(Q + 1) × (Q + 1) matrices.
Solutions of Eqs. (50) we suggest to seek in the form(

F
G

)
=

(
F1

G1

)
+

(
F2

G2

)
,

whereF1, G1 satisfy Eqs. (51),

L̂uP1|l = Af F|l + AgG|l , l = 1, 2, . . . , Q f ,
(51a)

P1
0 = 0, P1

Q = 0 (n > 1)

λ̄F1
l = (−i αmU0(rl )Fl + νL f F|l ) − Rf P1|l , l = 1, 2, . . . , Q f ,

(51b)
F1

0 = 0, F1
Q = 0 (n > 1)

λ̄G1
l = (−i αmU0(rl )Gl + νLgG|l ) − RgP1|l , l = 1, 2, . . . , Qg,

(51c)
G1

0 = 0, G1
Q = 0 (n > 3)

andF2, G2 are the solutions of

L̂uP2|l = 0, l = 1, 2, . . . , Q f , (52a)

(H f F + H gG)|l=0 = 0, P2
Q = 0 (n > 1), (52b)

λ̄F2
l = −Rf P2|l , l = 1, 2, . . . , Q f ,

(52c)
F2

0 = 0, F2
Q = 0 (n > 1),

λ̄G2
l = −RgP2|l , l = 1, 2, . . . , Qg,

(52d)
G2

0 = 0, G2
Q = 0 (n > 3).

Next, we expressP1 throughF andG by means of Eq. (51a) and substitute the result into
the right hand side of equalities (51b), (51c). Thus, we obtainλ̄F1, λ̄G1 as the functions of
F andG. Similarly, the relation between̄λF2, λ̄G2 andF, G is given by the relations

λ̄F2
l = −κ Rf h|l , l = 1, 2, . . . , Q f ,

λ̄G2
l = −κ Rgh|l , l = 1, 2, . . . , Qg,

where vectorh = (h0, h1, . . . , hQ)T is the solution of a problem

L̂uh|l = 0, l = 1, 2, . . . , Q f ,

h0 = 1, hQ = 0 (n > 1).

Coefficientκ as a function ofF1, G1 (and viaF1, G1 as a function ofF, G) can be evaluated
from

(H f F2 + H gG2)|l=0 = − (H f F1 + H gG1)|l=0.
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As a result we obtain then

λ̄

(
F
G

)
= λ̄

(
F1 + F2

G1 + G2

)
= T

(
F
G

)
, (53)

whereT is a certain complex(Q f + Qg) × (Q f + Qg) matrix. If we eliminate theF1

component of vectorF from (53) (components ofF are linearly dependent according to the
first equation of (52b)) we finally come to the spectral problem (48) with

x = (F2, F3, . . . , FQ f , G1, G2, . . . , GQg)
T .

Table 1 illustrates exponential inQ convergence of the pseudospectral discretization
used. Our results agree with those of [15](λ1 = −0.023170795764− i 0.950481396668)
and [18](λ1 = −0.023170795− i 0.950481397). Data given in Table 1 correspond to high
accuracy calculations with the roundoff error of about one part in 1035. Notice also that
the convergence rate of our algorithm is comparable with those of the spectral method [15,
Table on p. 340].

Following previous authors (see, e.g., [12]) we agree that the computer roundoff errors
should be distinguished from truncation ones. In Table 2 we show the effect of both types
of them on the eigenvalues evaluated by means of our algorithm. Above all, we point to
the extremely weak sensitivity of the algorithm to the roundoff errors. Indeed, from two to
three true digits are permanently observed in the case of low precision (roundoff' 10−7)
calculations for a wide range of numbers of collocation points. Note thatQ + 1= 181
corresponds to the interpolation polynomials (18) incorporating Chebyshev polynomials
T2l , l = 0, 1, . . . , Q of a very high (up to 2Q = 360) order. These results are much better
than the typical roundoff sensitivity of spectral methods illustrated by Orszag in [26, Table 3,
p. 696].

We stress that weak sensitivity of the algorithm to roundoff errors at largeQ is of spe-
cial interest in the context of reliable approximation of Fourier modes with considerable
streamwise and azimuthal wavenumbers. Table 3 illustrates the necessity to use much larger
resolution forαm, n À 1: no one correct eigenvalue can be calculated with 31 collocation
points compared to 7 true digits ofλ̄1 atαm = n = 1 obtained withQ + 1= 21 collocation
nodes (Table 2). In addition, as it follows from Table 4, only three leading eigenvalues
λ̄k, k = 1, 2, 3 can be properly calculated with 61 collocation points forαm = n = 20, even
with 11 true digits for̄λ1 at the same resolution (Table 3)! Such behaviour must be taken

TABLE 1

Convergence of the Least Stable Eigenvalue forRe= 9600,αm = n = 1

Q + 1 re(̄λ1) im(λ̄1)

21 −0.02318 −0.950497
26 −0.0231710 −0.9504815
31 −0.023170795 −0.9504813961
36 −0.023170795770 −0.950481396671
41 −0.02317079576499 −0.950481396669905
46 −0.02317079576500423 −0.950481396669903171
51 −0.023170795765004215199 −0.95048139666990317950
56 −0.0231707957650042152055 −0.9504813966699031794843
61 −0.0231707957650042152055 −0.9504813966699031794843
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TABLE 2

Influence of Round-Off Error on the Leading Eigenvalueλ̄1; Re= 4000,αm = n = 1

Q+ 1 Roundoff' 10−7 Roundoff' 10−16 Roundoff' 10−35

21 −0.0358−0.9233i −0.0357935−0.9233155i −0.03579355−0.9233155i
31 −0.0361−0.9233i −0.035793677913−0.923314870453i −0.035793677912−0.923314870454i
41 −0.0356−0.9233i −0.035793677911−0.923314870452i −0.0357936779107323584−0.92331487045189852028i
51 −0.0359−0.9233i −0.035793677911−0.923314870452i −0.0357936779107323579865−0.923314870451898520388i
61 −0.0358−0.9234i −0.035793677911−0.923314870452i −0.0357936779107323579865−0.9233148704518985203883i
71 −0.0361−0.9236i −0.035793677911−0.923314870452i −0.0357936779107323579865−0.9233148704518985203883i
81 −0.0357−0.9233i −0.035793677911−0.923314870452i −0.0357936779107323579866−0.9233148704518985203882i

121 −0.0355−0.9237i −0.035793677909−0.923314870452i
181 −0.0363−0.9246i −0.035793677910−0.923314870451i
201 +0.0258−0.3496i −0.035793677907−0.923314870455i

into consideration when examining the role of degeneracy [11] or transient growth mecha-
nisms [12] in triggering transition by means of direct Navier–Stokes integration. Numerical
technique insensitive (to some extent) to the roundoff errors at a large number of collocation
points (Chebyshev polynomials) may be useful in this case.

B. Navier–Stokes Solver: Accuracy and Stability a priori Estimates

In the previous section we examined the Navier–Stokes eigenvalue spectrum in order to
carry out the preliminary monitoring of the suggested spatial discretization. In particular, it
was shown that there are no spurious or parasitic modes among the numerical eigensolutions
of the linearized equations.

Nevertheless, additional errors can be introduced both by the time advancing scheme
and the solution procedure for the discretized equations. A convenient way (see, e.g.,
[27]) to check the discrete Navier–Stokes solver accuracy, stability, and sensitivity to the
roundoff errors is the evaluation and comparison of the eigenvalues sets{λ j (αm, n, Re)},
{λ̄ j (αm, n, Re, Q)}, and{λ̃ j (αm, n, Re, Q, 1t, S)} the last being the spectrum of fully dis-
crete Navier–Stokes equations linearized about their stationary solutions. Nonlinear cal-
culations usually show [7] thata priori estimates of accuracy and stability based on the
reasonable closeness of the above-mentioned eigensolutions permit us to select adequate
values ofQ, 1t, Sdepending on the parametersRe, X, M, N of the mathematical model.

We continue by explaining the technology of{λ̃ j } evaluation and by analyzing the results
obtained. It can be easily shown that formulas (46) taken atr = rl determine stationary

TABLE 3

Convergence of the Least Stable EigenvalueRe= 4000,αm = n = 20

Q+ 1 re(̄λ1) im(λ̄1)

31 −0.839 −12.642
41 −1.0395775 −1.476281
51 −1.039578126 −1.476280146
61 −1.03957812187 −1.47628014065
71 −1.03957812185209 −1.47628014063815
81 −1.03957812185208327 −1.476280140638094303
91 −1.0395781218520833192 −1.4762801406380943001

101 −1.0395781218520833192 −1.4762801406380943001
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TABLE 4

Ten Leading Eigenvalues{λ̄k}10
k=1 Depending on Spatial Resolution;Re = 4000,αm = n = 20

Q+ 1= 41 Q+ 1= 61 Q+ 1= 81 Q+ 1= 101

1 −1.0396−1.4763i −1.0396−1.4763i −1.0396−1.4763i −1.0396−1.4763i
2 −1.1738−2.3054i −1.1738−2.3054i −1.1738−2.3054i −1.1738−2.3054i
3 −1.1764−14.1882i −1.6561−2.5602i −1.6561−2.5602i −1.6561−2.5602i
4 −1.1789−13.4565i −2.0152−15.6137i −2.0290−2.8932i −2.0290−2.8932i
5 −1.1870−14.8930i −2.0169−16.0459i −2.1021−17.8053i −2.1021−17.8053i
6 −1.1933−12.7022i −2.0216−15.1640i −2.1310−3.4569i −2.1310−3.4569i
7 −1.2054−13.8031i −2.0274−16.4586i −2.2299−3.8621i −2.2299−3.8621i
8 −1.2108−14.5228i −2.0290−2.8932i −2.2998−17.6039i −2.2998−17.6039i
9 −1.2126−13.0588i −2.0356−14.6982i −2.3038−17.9873i −2.3038−17.9873i

10 −1.2128−15.5667i −2.0476−16.8493i −2.4976−17.4025i −2.4976−17.4025i

solutions of Eqs. (21). We linearize (21) about these solutions. The result can be written as
(the casen > 0 for definiteness)(

2

1t
− νL f

)
(s)
F k+1|l + Rf

(s)
P k+1|l = τ

f
0 δl0 + τ

f
Q(1 − δn1)δl Q +

(
2

1t
+ νL f

)
Fk|l

− i αmU0(rl )Fk
l + X f Uk|l

− i αmU0(rl )
(s−1)

F k+1
l + X f

(s−1)

U k+1|l , (54a)

l = 0, 1, . . . , Q,
(s)
F k+1

0 = 0,
(s)
F k+1

Q = 0(n > 1)

(
2

1t
− νLg

)
(s)
Gk+1|l + Rg

(s)
Pk+1|l = τ

g
0 δl0 + τ

g
Q(1 − δn1 − δn2 − δn3)δl Q

+
(

2

1t
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)
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k
l + XgUk|l

− i αmU0(rl )
(s−1)

G k+1
l + Xg

(s−1)

U k+1|l , (54b)

l = 0, 1, . . . , Q,
(s)
Gk+1

0 = 0,
(s)
Gk+1

Q = 0(n > 3)

(
2

1t
− νLu

)
(s)
Uk+1|l + i αm

(s)
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l = τ u
0 δl0 + τ u
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(
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(s−1)

U k+1
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(s−1)

F k+1
l +al

(s−1)

G k+1
l , (54c)

l = 0, 1, . . . , Q,
(s)
U k+1

0 = 0,
(s)
U k+1

Q = 0 (n > 1)

H f F(s)k+1|l + H gG(s)k+1|l + 2i αmU (s)k+1
l = 0, l = 0, 1, . . . , Q f ,

P(s)k+1
Q = 0 (n > 1),

(54d)
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whereν = 1/Re; al = 1 (n = 1), al = r 2
l (n > 1); s = 1, 2, . . . , S is the iteration counter;

Fk, Gk, Uk, andPk are the Fourier coefficients of disturbances:Fk = (Fk
0 , Fk

1 , . . . , Fk
Q)T , Fk

l

= f̃
F

nm(rl , tk) and analogously forGk, Uk, andPk. MatricesX f andXg that appeared at the
right hand sides of Eqs. (54) in the course of linearization are defined as

X f
l j = Bl j (U

0(rl ) − U0(r j )) + (n − σn)Sl j (U
0(r j ) − U0(rl )) − 2El j ,

Xg
l j =

{
r 2

l U0(rl )Bl j − Dl j U0(r j ) − 2r 2
l El j , n = 1,

Bl j (U0(r1) − U0(r j )) + (n + σn)Sl j (U0(rl ) − U0(r j )) − 2El j , n > 1.

Notice thatX f U, XgU 6≡ 0 because operatorsS andB are exact only on the polynomials
of degree not higher than 2Q.

The resolve Eqs. (54) (that is, to express the unknown quantities relating tot = tk+1 and
iteration loops through the ones att = tk and preceding iteration) we exploit the numer-
ical method of Sections V, VII. Limiting ourselves toαm 6= 0 and dropping intermediate
calculations we obtain then

(s)
x k+1 = T1xk + T2

(s−1)
x k+1, s ≥ 1, x = (F1, F2, . . . , FQ f , G1, G2, . . . , GQg)

T , (55)

where complex(Q f + Qg) × (Q f + Qg) matricesT1, T2 are functions ofαm, n, Re, Q,
and1t . By evaluating initial approximations as

(0)
x k+1 = 2xk − xk−1,

we obtain from recurrence relations (55)

(S)
x k+1 = T3xk − T S

2 xk−1, (56)

where

T3 = 2T S
2 + (

T S−1
2 + T S−2

2 + · · · + T2 + E
)
T1.

MatricesT3 andT2 do not depend on indexk. Therefore we seek solutions of Eqs. (56)
in the form

(S)
x k+1 = (S)

ρ k+1x,

where
(S)
ρ andx are among the eigensolutions of the spectral problem

(S)
ρ y = Ty =

(
T3 −T S

2

E 0

)
y, y = (

(S)
ρ x, x)T . (57)

Desired eigenvalues̃λ j = λ̃ j (αm, n, Re, Q, 1t, S) are evaluated then by the formulas

λ̃ j = 1

1t
ln

(S)
ρ j , j = 1, 2, . . . , Q f + Qg. (58)

Comparison of the fully discrete eigenvalues{λ̃ j } with {λ̄ j } and {λ j }, reλ j ≥ reλ j +1

allows one to make certain conclusions concerning stability and accuracy characteristics of
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TABLE 5

Eigensolutions of the Discrete and Differential Spectral Problems;Re = 4000,S = 2

αm, n 1t λ̄1(αm, n, Re, Q, 1t, S) λ̄1(αm, n, Re, Q), λ1(αm, n, Re)

Q= 30 Q= 40 Q= 50
1, 1 0.8 −0.0405−3.93i −0.0129−3.93i −0.00527−3.93i λ̄1 = −0.0358−0.923i (Q= 30)

0.4 −0.0462−0.916i −0.0462−0.916i −0.0211 −7.85i λ1 = −0.0358−0.923i
0.2 −0.0370−0.921i −0.0370−0.921i −0.0370 −0.921i
0.1 −0.0359−0.923i −0.0359−0.923i −0.0359 −0.923i
0.05 −0.0358−0.923i −0.0358−0.923i −0.0358 −0.923i

10, 10 0.2 +4.14 −12.4i +4.14 −12.2i +4.14 −12.2i λ̄1 = −0.512−7.70i (Q= 30)
0.1 −0.474 −5.11i −0.573 −0.928i −0.337 +31.4i λ̄1 = −0.574−0.928i (Q= 40)
0.05 −0.317 −6.68i −0.574 −0.928i −0.574 −0.928i λ1 = −0.574−0.928i
10−3 −0.262 −7.21i −0.574 −0.928i −0.574 −0.928i
10−4 −0.262 −7.21i −0.574 −0.928i −0.574 −0.928i

20, 20 0.1 +7.59 −24.5i +7.47 −24.4i +7.46 −24.4i λ̄1 = −0.839−12.6i (Q= 30)
0.05 −0.651 −8.24i −1.04 −1.48i −1.04 −1.48i λ̄1 = −1.04−1.48i (Q= 40)
0.025 −0.477 −11.4i −0.919 −12.5i −1.04 −1.48i λ1 = −1.04−1.48i
0.0125 −0.429 −11.5i −0.849 −13.3i −1.04 −1.48i
10−3 −0.421 −12.5i −0.840 −13.4i −1.04 −1.48i
10−4 −0.421 −12.5i −0.840 −13.4i −1.04 −1.48i

42, 42 0.05 +14.7 −49.6i +14.4 −49.5i +14.2 −49.5i λ̄1 = −1.92−18.2i (Q= 30)
0.025 −1.59 −13.3i −2.19 −16.6i −2.27 −2.42i λ̄1 = −2.27−2.42i (Q= 40)
10−3 −1.42 −17.7i −1.88 −21.7i −2.27 −2.42i λ1 = −2.27−2.42i
10−4 −1.42 −17.7i −1.88 −21.7i −2.27 −2.42i

the numerical method as well as to make the preliminary selection of its parameters. For
example, in Table 5 we compare the least stable discrete eigenvaluesλ̃1 evaluated by means
of algorithm (54)–(58) with the corresponding eigenvalues of the differential problem.

It should be stressed in addition, that the procedure of matrixT evaluation is just the
same as suggested in Sections V and VII. Therefore, computations by means of formulas
(54)–(58) may indicate the effect of computer roundoff errors.

Such information cannot be obtained by means of a popular method based on the sta-
bility region concept [23]. The latter technique can be exploited only when the same time
integration scheme is used both for viscous and convective terms. For example, with the
implicit Crank–Nicolson method Eqs. (55) take the form

(xk+1 − xk)/1t = T̄(xk+1 + xk)/2, (59a)

and with certain predictor-corrector method

((s)
x k+1 − xk

)
/1t = T̄

((s−1)
x k+1 + xk

)/
2 (s = 1, 2, . . . , S),

(0)
x k+1 = 2xk − xk−1, (59b)

whereT̄ is the matrix from Eq. (48). In both cases each eigenvalueρ of the conversion matrix
from time steptk to time steptk+1 is defined by the product of1t times the corresponding
eigenvaluēλ(αm, n, Re, Q) of matrix T̄ ,

ρ =
(

1 + 1

2
λ̄1t

)/(
1 − 1

2
λ̄1t

)
, (60a)
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for (59a) and

(S)
ρ

2

− (S)
ρ

(
1 + λ̄1t

1 − (0.5λ̄1t)S

1 − 0.5λ̄1t
+ (0.5λ̄1t)S

)
+ (0.5λ̄1t)S = 0, (60b)

for (59b). And what is more, formulas (59), (60) differ from the actual solution procedure
for the discrete Navier–Stokes equations. Therefore, the concept of stability regions on the
complex planēλ1t cannot be used to examine the effect of roundoff errors on the accuracy
and sometimes even on the stability limit of computations.

C. Direct Navier–Stokes Simulation of Laminar-Turbulent Transition at Re= 4000

Initial disturbances of laminar pipe Poiseuille flow were specified using superposition
of axisymmetric and nonaxisymmetric eigenfunctions of the Navier–Stokes equations lin-
earized about the parabolic velocity profile. Concretely, we used three least stable vector
eigenfunctions corresponding to Fourier modes with wavenumbers(αm, n) = (1, 0); (0, 1);
(1, 1) and energies

Enm = 1

π R2X

∫
G

dr
v2

nm

2
= 10−3

each. Time evolution of these finite-amplitude disturbances was calculated until the sta-
tistically stationary turbulent flow regime was established. Computations were carried
out with (Q + 1) × (2N + 1) × (2M + 1) = 33× 41× 41 basis functions inr, ϕ, x at
Re= 4000(ReCL = ūCLD/ν ≈ 5432, Reτ = uτ D/ν ≈ 289) and X = π D(X+ = Xuτ /ν ≈
907). Here ūCL anduτ are the mean centreline and wall-shear velocities. Minimum and
maximum grid spacings inr are 0.17 (the first mesh point away from the wall) and 7.09 in
wall units. The minimal resolved wavelengths inϕ (atr = R, along the pipe surface) andx
areλϕ = π D/N ≈ 45.36ν/uτ andλx = X/M ≈ 45.36ν/uτ .

The computed time history of laminar-turbulent transition is shown in Figs. 1, 2. The
primary stabilization of basic integral flow characteristics such as the space-averaged pres-
sure gradient and kinetic energy of disturbances (Fig. 1(a)) as well as of the mean (ϕ and
x-averaged) velocity profile (Fig. 2(a)) is rather a rapid process taking of about 100 non-
dimensional time units (4000 time steps). It should be noted that time intervalt ∈ [50, 100]
often proves to be the bane of numerical simulation, due to very rapid reorganization of
the flow field at the late stage of transition and the strongly nonlinear nature of this pro-
cess. We remind also that our computations were carried out under the condition of volume
flux constancy (see Fig. 1(b) and Eq. (3c)). Otherwise (e.g., if the space-averaged pressure
gradient is assumed to be fixed), duration of the transient regime may be several times
longer. The total integration time was aboutT ≈ 1500 (see Fig. 1(a)) with the averaging
time T̄ ≈ 500 ≈ 18R/uτ ≈ 2659ν/u2

τ (t ∈ [1000, 1500], Fig. 1(a)) and computational
time step1t = 0.025≈ 9.03× 10−4R/uτ ≈ 0.13ν/u2

τ .
The mean velocity profiles as well as the computed Reynolds shear stress are compared

with those of experimental and numerical data [28, 29, 3] in Figs. 2(b), 4(a). Here and
below the computed mean and r.m.s. values areϕ, x, and time-averages. The agreement is
quite satisfactory in spite of the fact that present spectral calculations are carried out with
much less number of basis functions compared with the number of grid points exploited
by the finite-difference scheme of [3]. Note also, that the congruence of the computed
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FIG. 1. (a) Time history of the laminar-turbulent transition in a circular pipe under the condition of flow
flux constancy;〈∇ p〉r,ϕ,x is the non-dimensionalized space-averaged pressure gradient (initial value of−10−3

corresponds to laminar pipe flow pressure gradient−4/Re), Edist is the total kinetic energy of disturbances.
(b) Skin-friction coefficientCf = −〈∇ p〉r,ϕ,x,t D/2ρŪ 2 versus Reynolds number. An arrow connects initial and
final states of the transition process: point “?” corresponds to the disturbed laminar flow (initial condition of our
Navier–Stokes simulation), and point “◦” to the established turbulent flow regime. Intermediate stages of transition
all correspond to arrow points between? and◦. The computed turbulent value ofCf ≈ 1.04×10−2 (point◦) agrees
well with Blasius friction lawCf = 0.079Re−1/4 ≈ 9.93× 10−3 (about 5% difference) atRe= 4000.
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FIG. 2. (a) Mean velocity profiles in the course of laminar-turbulent transition in a circular pipe atRe= 4000.
(b) Mean velocity profiles normalized by the centreline velocity(y = 1 − r/R).

total shear stress with the straight line indicates both that the statistical sample is adequate
and that the computed results correspond to the equilibrium state. Analogous conclusions
can be made by examining Fig. 3 where the r.m.s. velocity fluctuations are presented. The
distributions of root-mean-square vorticity fluctuations are shown in Fig. 4(b). In Fig. 5 we
compare them in the near-wall region with those of high resolution channel flow simula-
tions [30].

As far as we know this is the first direct simulation of all stages of laminar-turbulent tran-
sition in a circular pipe. Previous investigations dealt with either established turbulent pipe
flows [2, 3, 8] or initial stages of transition [6]. Thus, the algorithm presented seems to be
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FIG. 3. Root-mean-square velocity fluctuations as functions of distancey = 1 − r/R from the pipe wall:
(a) streamwise and radial; (b) azimuthal velocity components.
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FIG. 4. (a) Reynolds and total shear stress distributions. (b) Root-mean-square vorticity fluctuations in global
coordinates.

a ready-to-use robust tool for accurate numerical simulation and future well-resolved para-
metric studies of both transition mechanisms and fully developed turbulent flow regimes.

IX. DISCUSSION

Up to this point, when searching for the numerical Navier–Stokes solutions in the form
(10), we did not presuppose the existence of any symmetry restrictions. Meanwhile, similar
hypotheses are often made in the course of boundary layer and channel flow simulations
when the flow field is assumed to be symmetric with respect to the planez = 0, z being the
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FIG. 5. Root-mean-square vorticity fluctuations in the near wall region.

spanwise coordinate (see, e.g., [31–33]). In Cartesian coordinates the spanwise-symmetric
Navier–Stokes solutions seem to be adequate: comparison of the computed turbulent flow
characteristics with those obtained in the laboratory gives satisfactory results. Nevertheless,
until now no serious theoretical arguments are shown on behalf of the possibility to describe
transitional and turbulent flow regimes by means of spanwise-symmetric (at every moment
of time!) Navier–Stokes solutions. Possibly, this is the reason why in the most thorough
and accurate calculations (see, e.g., [30]) numerical solutions are not assumeda priori to
have certain symmetries.
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In cylindrical coordinates the “spanwise” symmetry of the velocity field means that

v(r, ϕ, x, t) = v(r, −ϕ, x, t),

w(r, ϕ, x, t) = −w(r, −ϕ, x, t), (61)

u(r, ϕ, x, t) = u(r, −ϕ, x, t),

and these relations are formally preserved by the Navier–Stokes equations (2a), (2b) and
boundary conditions (2c), (3). From the computational point of view it is rather tempting to
assume that turbulent flow may have such a symmetry. Indeed, in this case one can exploit
the sparse set of Fourier modes instead of general representation (10). As it follows from
Eqs. (29) and (61)

vS
n (r, x, t) ≡ 0, wC

n (r, x, t) ≡ 0, uS
n(r, x, t) ≡ 0, (62)

so that the computational complexity of simulation may be considerably reduced. See, e.g.,
[34] where symmetry restrictions (61) are exploited for the turbulent pipe flow simulation.

However, in contrast to Cartesian coordinates we can produce certain reasons justifying
the inability of the Navier–Stokes solutions (61) to describe actual turbulent flow inG. In
fact, if Eqs. (62) are correct, we obtain instead of (38)

ωx(r, ϕ, x, t) = r (ω̄x)
S
1 sinϕ + r 2

N∑
n=2

r σn(ω̄x)
S
n sinnϕ, (63)

where functions(ω̄x)
S
n are defined by Eqs. (39) as before. We remind that formulas (63)

follow directly from Theorem 1 that governs the asymptotic behaviour of analytic functions
at r → 0. Note that as it follows from Eqs. (63), the instantaneous values as well as the
root-mean-square fluctuations of the streamwise vorticity become zero at the polar axis.

The latter property contradicts certain known computational results for the turbulent flow
vorticity values far away from channel or pipe walls. Indeed, in channel flow calculations [30,
Fig. 14(a)] all three components of the fluctuating vorticity have almost equal nonzero val-
ues at the channel centerline. An analogous result is obtained in the present paper (Fig. 4(b))
for general Navier–Stokes solutions having no symmetry restrictions. In addition, such a
behaviour of vorticity components looks very plausible from the physical point of view.
As to the existing experimental data on vorticity fluctuations, it seems to be limited to the
near-wall region and therefore cannot be used to determine if the Navier–Stokes solutions
(61) can describe any turbulent flow regimes.

To clarify the issue, i.e., to understand if the approximate Navier–Stokes solutions (61)
really exist and what is their relationship with actual turbulent flows inG, we have carried
out a special investigation. The latter involved both the description of laminar-turbulent
transition and the evaluation of those turbulent flow characteristics that correspond to well
established experimental data.

As a result we can conclude that the use of symmetry relations (61) in the course of
numerical simulation turns out to be rather insidious. First of all, the numerical Navier–
Stokes solutions (61) do exist: pipe Poiseuille flow is unstable with respect to finite amplitude
azimuthally symmetric disturbances and statistically steady (“turbulent”) solutions can be
really computed. Second, certain basic turbulence characteristics are almost insensitive (e.g.,
the skin-friction coefficient as well as the root-mean-square fluctuations of streamwise and
radial velocity components shown in Fig. 7(a)) or weakly sensitive (the Reynolds shear
stress, Fig. 8(a)) to the incorporating of symmetry relations into the numerical model.
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However, there exist such well-established flow characteristics that cannot be adequately
described by the azimuthally symmetric solutions. Among them are the mean velocity profile
and r.m.s. fluctuations of the azimuthal component of velocity (Figs. 6, 7(b)). But the most
striking disagreement between azimuthally symmetric and general form solutions represents
the streamwise component of vorticity (compare Figs. 4(b) and 8(b)). Thus, in contrast to the
plane channel and boundary layer flows, the “spanwise” (azimuthally) symmetric Navier–
Stokes solutions fail to describe some of the basic turbulent flow characteristics inG. It
should be noted in conclusion, that we did not examine here the stability of solutions (61)
with respect to disturbances of a general form.

One more symmetry group allowed by the Navier–Stokes equations and boundary con-
ditions (2), (3) is defined by the solutions (10) with

v2k,2l+1(r, ϕ, x, t) = 0, v2k+1,2l (r, ϕ, x, t) = 0,

k = 0, 1, . . . , l = 0, 1, . . . .
(64)

Nonstationary Navier–Stokes solutions with symmetry restrictions (64) were computed
(among others) using one of the previous versions of our numerical method (algorithmA,
[7]). These long-life (i.e., undamped at least for about1T ' O(Re)) solutions describe
statistically steady flow regimes inG with the same skin-friction coefficient, aver-
aged pressure gradient, and kinetic energy of velocity fluctuations as in the case of gen-
eral Navier–Stokes solutions without any symmetry restrictions. The detailed comparison
of turbulence statistics computed by means of symmetric and general solutions was not
conducted.

Notice also the following computational peculiarity of the symmetry conditions
(64). If we take the velocity field satisfying Eqs. (64) as an initial condition for the
Navier–Stokes integration in time, we may reproduce these symmetry relations for arbitrary
time even when we use an universal computer code. We may even not suspect that one half

FIG. 6. Mean velocity profiles corresponding to Navier–Stokes solutions of general and azimuthally sym-
metric forms.
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FIG. 7. Comparison of the r.m.s. velocity distributions corresponding to Navier–Stokes solutions of general
and azimuthally symmetric forms.

of our Fourier modes remains equal to zero in the course of calculation. For example, if
our initial condition is the superposition of the base parabolic flow and any eigensolution
corresponding to wavenumbers(m, n) = (1, 1) we’ll be able to compute only solutions
belonging to the class of functions (64). Roundoff errors may not play the usual destabi-
lizing role here because the result of the multiplication of a nonzero value by the machine
zero is often interpreted as the zero constant by the computer. That is just the case when we
compute the quadratic nonlinear terms of the Navier–Stokes equations.

Of course, the foregoing investigation of some symmetry relations and their suitabil-
ity for the Navier–Stokes turbulent flow simulation is incomplete. Additional examples
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FIG. 8. Comparison of the Reynolds shear stress distributions (a) and r.m.s. vorticity fluctuations (b) corre-
sponding to Navier–Stokes solutions of general and azimuthally symmetric forms.

of symmetries allowed by the incompressible Navier–Stokes equations can be found in
[35, 36] concerned with Taylor–Couette and spherical Couette flows. In the present
investigation we intended to show possible difficulties as well as the existence of certain
solutions in principle. Is there any relation between symmetry and some special physics?
Are symmetric solutions stable with respect to disturbances of general form? Are there
any simplifications of the space-time structure of velocity and pressure fields described by
the symmetric solutions compared with those of general form? Are symmetric solutions
approaching those of general form in the limit when the Reynolds number is very large?
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These problems require additional thorough investigation. We hope that our accurate and
fast numerical method can be exploited for that purpose.

X. SUMMARY AND CONCLUSIONS

We have presented a fast, accurate, and robust pseudospectral Navier–Stokes algorithm
suitable for numerical investigation of laminar, transitional, and turbulent incompressible
fluid flow regimes in a circular pipe. Moreover, a new algorithm (or its fragments) may have
wider applicability including the situations when computational domain contains coordinate
singularity along the polar axisr = 0 and when the dependence on azimuth angleϕ can be
represented as a Fourier series due to physical symmetry of the problem.

The algorithm is based on a new change of dependent variables that avoids singularity
problems taking into account special behaviour of analytic functions in the vicinity of a
singularity point (Theorem 1). Being written in new variables Navier–Stokes equations can
be discretized then without loss of accuracy by using the Galerkin trigonometric approx-
imation in azimuthal and streamwise directions and the Chebyshev collocation technique
in r . The use of half Chebyshev grid points with prescribed conditions atr = 0 turned out
to be justified: spectral (faster than algebraic) convergence of numerical Navier–Stokes
solutions in the pipe was achieved. The possible reason for spectral convergence is that the
Navier–Stokes solutions obtained proved to be analytic functions in the vicinity of polar
axis. In this case their Fourier coefficients may be smoothly extended to the functions on the
interval [−R, R]. Thus, depending on the azimuth wavenumber the even or odd Chebyshev
polynomials become appropriate expansion functions ensuring spectral accuracy.

For integration in time we exploit the Crank–Nicolson method with viscous terms, the
backward Euler with the pressure, and the second order predictor-corrector scheme with the
nonlinearity. For the solution of resulting discrete Navier–Stokes equations we suggest an
efficient and weakly roundoff-sensitive method (Theorem 2). This method is based on the
influence matrix technique but has certain modifications (due to the cylindrical geometry
and coordinate singularities atr = 0).

Another key point of our algorithm is a fast technique for the evaluation of Navier–
Stokes nonlinear terms. Direct implementation of the usual pseudospectral method proves
to be impossible due to a rather complicated form of nonlinearity written in terms of new
variables.

A new algorithm was thoroughly tested: eigensolutions of the pipe Poiseuille flow linear
stability problem as well as the total time history of laminar-turbulent transition including
the established turbulent flow regime were computed at the supercritical Reynolds number
of 4000. In spite of the presence of coordinate singularities the algorithm provides spectral
accuracy and is weakly sensitive to the roundoff errors. We stress that the new algorithm
allows us to compute all the stages of laminar-turbulent transition inG in the framework
of one mathematical model without tuning its parameters in the course of computations.
The latter seems to be very important for future high resolution parametric studies of
transition mechanisms and comparisons with corresponding experimental data. Notice also,
that our calculations are completely reproducible: in addition to necessary formulas we
show the structure and amplitudes of initial disturbances of parabolic base flow (being the
eigenvectors of linear stability problem) that finally lead to laminar-turbulent transition.

In conclusion we want to draw attention to the results concerning the existence and
usefulness of numerical Navier–Stokes solutions having certain symmetries. In particular,
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we managed to show that, in contrast to turbulent channel and flat plate boundary layer
flows, the pipe flow turbulence cannot be adequately described by the so-called spanwise-
symmetric Navier–Stokes solutions. It should be noted that spanwise symmetry of solutions
does not represent some kind of exotic symmetry group: the time averaged Navier–Stokes
solutions of general form seem to have such symmetry.

APPENDIX A: MATRIX ELEMENTS OF EQS. (19)

For arbitraryl , j = 0, 1, . . . , Q,

Cl j = 16% j

Q

Q∑
q=0

%qT2q(r j /R)q
q∑

m=0

(q − m)(q + m)
T2m(rl /R)

cm
,

Bl j = 8% j

Q

Q∑
q=0

%qT2q(r j /R)q
q∑

m=0

[1 − (−1)q−m]
T2m(rl /R)

cm
,

Dl j = 8% j

Q

Q∑
q=0

%qT2q(r j /R)q
q∑

m=0

ρ(q)
m T2m(rl /R),

Sl j = 8% j

Q

Q∑
q=0

%qT2q(r j /R)(−1)q−1
q∑

m=0

(q − m)(−1)m T2m(rl /R)

cm
,

where

c0 = 2, cm = 1 (m ≥ 1),

%0 = %Q = 0.5, %q = 1 (q 6= 0, Q),

T2q(r j /R) = cos
π jq

Q
, T2m(rl /R) = cos

π lm

Q
,

ρ
(q)
0 = ρ(q)

q = 0.5, ρ(q)
m = 1(m = 1, 2, . . . , q − 1).

APPENDIX B: ADDITIONAL FORMULAS FOR ZERO WAVENUMBERS

1. Equations(21) for αm > 0, n = 0

Instead of (21) we have(
2

1t
E − νLv

)
V |l + BP |l = τ v

0 δl0 + av
l , l = 0, 1, . . . , Q,

(21′a)
V0 = 0(

2

1t
E − νLw

)
W |l = aw

l , l = 1, 2, . . . , Q,

(21′b)
W0 = 0(

2

1t
E − νLu

)
U |l + ∂

∂x
Pl = τ u

0 δl0 + au
l , l = 0, 1, . . . , Q,

(21′c)
U0 = 0
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(D + 2E)V |l + ∂

∂x
Ul = 0, l = 0, 1, . . . , Q. (21′d)

HereP def= (P0, P1, . . . , PQ)T , Pj (x) = 2
(s)
p̃ k+1

0mj = 2
(s)
p̃k+1

0m |r =r j ; V def= (V0, V1, . . . , VQ)T ,

Vj (x) = (s)
ṽ k+1

0mj, analogously forW andU. MatricesLv,w,u are defined by

Lv = Lw = C + 3B − α2
mE, Lu = C + B − α2

mE. (23′)

2. Equations(21) for αm = 0, n > 0

Formally, Eqs. (21), (22) may be used in this case. However, we can improve the stability
characteristics of the scheme rewriting (21), (22) as(

2

1t
E − νL f

)
F|l + Rf P|l = τ

f
0 δl0 + τ

f
Q(1 − δn1)δl Q + a f

l ,

(21′′a)
l = 0, 1, . . . , Q, F0 = 0, FQ = 0 (n > 1)(

2

1t
E − νLg

)
G|l + RgP|l = τ

g
0 δl0 + τ

g
Q(1 − δn1 − δn2 − δn3)δl Q + ag

l ,

(21′′b)
l = 0, 1, . . . , Q, G0 = 0, GQ = 0 (n > 3)(

2

1t
E − νLu

)
U|l = τ u

0 δl0 + τ u
Q(1 − δn1)δl Q + au

l ,

(21′′c)
l = 0, 1, . . . , Q, U0 = 0, UQ = 0 (n > 1)

H f F|l + H gG|l = 0, l =
{

0, 1, . . . , Q, n = 1
0, 1, . . . , Q − 1, n > 1,

(21′′d)
PQ = 0 (n > 1).

Here (in contrast to Eqs. (21), (22)),P def= (P0, P1, . . . , PQ)T , Pj (ϕ) = (s)
p̃ k+1

n0 j = (s)
p̃ k+1

n0 |r =r j ;
F def= (F0, F1, . . . , FQ)T , Fj (ϕ) =

(s)

f̃ k+1/2
n0 j = (

(s)

f̃ k+1
n0 j + f̃

k
n0 j )/2, analogously forG andU;

right hand sidesa f,g,u
l are defined by

a f
l = 2

1t
f̃

k
n0 l + d f

n0 l

 (s−1)
q k+1 + qk

2

 , (22′′)

with similar formulas forag
l , au

l .

3. Equations(21) for αm = n = 0

ṽ(s)k+1
00l = 0, l = 0, 1, . . . , Q, (21′′′a)

(
2

1t
E − νLw

)
W|l = 2

1t
w̃k

00l + dg
00l

 (s−1)
q k+1 + qk

2

 ,

(21′′′b)
l = 1, 2, . . . , Q, W0 = 0
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(
2

1t
E − νLu

)
U|l + (s)

px(tk+1) = 2

1t
ũk

00l + du
00l

 (s−1)
q k+1 + qk

2

 ,

(21′′′c)

l = 1, 2, . . . , Q, U0 = 0,

Q∑
j =0

γ j U j =
∫ R

0
U0r dr.

HereU def= (U0,U1, . . . ,UQ)T ,U j =(s)
ũ k+1/2

00 j = (
(s)
ũ k+1

00 j + ũk
00 j )/2 and analogously forW.

Coefficientsγ j and matricesLu, Lw are defined by

γ j = 2% j R2

Q

Q∑
l=0

%l T2l (r j /R)κl , κl =
{

1
4

(
1

2i +1 − 1
2i −1

)
, l = 2i

0, l = 2i + 1,

Lu = C + B, Lw = C + 3B.

4. Relations(24) for n = 0

(D + 2E)LvV + ∂

∂x
LuU = Lu

(
(D + 2E)V + ∂

∂x
U

)
, (24′a)

(
(D + 2E)B − α2

mE
)
P = LuP, (24′b)

where matricesLv, Lu are defined by Eqs. (23′) of the previous subsection.
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